
Ciaran McHale

Software that makes it easy to create anthologies
(and other documents) in PDF and HTML formats

Canthology User Guide
Version 1.0, 16 December 2011

www.canthology.org

Availability

This manual is available free-of-charge in the following formats:

• HTML for online viewing.

• PDF (formatted for A5 paper) for on-screen viewing.

• Two-up PDF for printing onto A4 paper.

• Source in Canthology format, in case you want to modify or update
this manual.

You can find all the above on www.Canthology.org.

Copyright of the Documentation

Copyright © 2011 Ciaran McHale. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in
Appendix C on page 190.

Copyright of the Software

Copyright © 2011 Ciaran McHale. This program is free software; you can
redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version. A copy of the license is
included in Appendix D on page 202.

Copyright of Supporting Files

The etc directory hierarchy of this distribution of Canthology contains
some files with ".sty", ".hva", ".tex" extensions. You are likely to use

iii

some or all of these files when writing a Canthology-based document.
These files have permissive copyright licenses that should not hinder your
ability to apply whatever copyright license you want to your own docu-
ment. More specifically:

• Most of the ".sty" files are released under version 1.3c of the LATEX
Project Public License. (A copy of this license is included in Ap-
pendix E on page 221.) The only exception is the file hevea.sty,
which was written by Luc Maranget. As far as I am aware, he con-
siders that file to be in the public domain.

• The ".hva" files are released without any explicit copyright license
attached to them. Please consider these to be in the public domain.

• Files with names of the form "example-*.tex" (where * is a wild-
card that matches zero or more characters) provide examples of how
to carry out particular typesetting tasks. Likewise, files with names of
the form "*-template*.tex" automate particular typesetting tasks. I
release these “example” and “template” files into the public domain.

The reasonable man adapts himself to the world; the unreason-
able one persists in trying to adapt the world to himself. There-
fore, all progress depends on the unreasonable man.
— George Bernard Shaw

Canthology is dedicated to unreasonable people
who strive to make the world a better place.

Contents

1 Introduction 1
1.1 What is Canthology? . 1
1.2 Uses of Canthology . 1

1.2.1 A Tailor-made Anthology of Poetry for Education 1
1.2.2 An Anthology of Personal Accounts 3
1.2.3 Showcasing the Expertise of Employees 3
1.2.4 Product Manuals 4

1.3 How Canthology Works 5
1.3.1 A Brief Overview of LATEX 5
1.3.2 Canthology’s Approach to Simplifying LATEX . . . 6

I Information for Contributors 8

2 Basic Markup 10
2.1 File Name . 10
2.2 Markup Commands for a Short Story 10
2.3 Markup for a Chapter-length Contribution 12
2.4 Markup Commands for Poetry 13
2.5 Special Characters . 16

3 More Markup Commands 19
3.1 Introduction . 19
3.2 Single and Double Quotes 19

v

vi Contents

3.3 Hyphens and Dashes . 20
3.4 Footnotes . 20
3.5 The quote Environment 21
3.6 The itemize and enumerate Environments 22
3.7 Next Steps . 23

II Background Information for Editors 24

4 LATEX History and Variants 26
4.1 Introduction . 26
4.2 A Short History of TEX and LATEX 26
4.3 Structure of a LATEX Document 28
4.4 The memoir Class . 29
4.5 Support for Colour and Graphics 30
4.6 Variations of TEX and LATEX 32

4.6.1 pdfTEX and pdfLATEX 32
4.6.2 XeTEX and XeLATEX 32
4.6.3 Generating HTML from LATEX 33

5 Overview of Configuration Syntax 36
5.1 Introduction . 36
5.2 Syntax . 36
5.3 Copying Default Values 38
5.4 Including Other Files . 38
5.5 Accessing Environment Variables 38

III Using Canthology to Generate PDF Files 39

6 Installing Canthology 41
6.1 Prerequisites for Installing Canthology 41
6.2 Installing Canthology . 42

Contents vii

7 A Tour of Canthology’s Features 43
7.1 Introduction . 43
7.2 The Starting-point Configuration File 43

7.2.1 Default Values and Paper Sizes 44
7.2.2 Output Directory and File Name 46
7.2.3 Front, Main and Back Matter 47

7.3 Running Canthology . 47
7.4 Text Substitutions on the Title Page 48
7.5 Adding Content . 54
7.6 Front and Back Matter 58
7.7 Summary . 63

8 How Canthology Operates 66
8.1 Introduction . 66
8.2 Configuration File and Scopes 66
8.3 Configuration Variables 67

8.3.1 Creating the Root ".tex" File 70
8.3.2 Copying Support Files 72
8.3.3 Performing Text Substitutions 75
8.3.4 Running LATEX-related commands 76

8.4 The etc/defaults.cfg File 77
8.5 Extending Configuration Variables 80

9 Next Steps 83
9.1 Introduction . 83
9.2 LATEX Documentation . 83
9.3 LATEX Errors . 84
9.4 Defining New Commands 84
9.5 Implementing a Package 85
9.6 Background Graphics . 87
9.7 Creating a Document in Multiple Formats 90
9.8 The Copyright Page . 93
9.9 Pages for Praise and a Dedication in a Book 94
9.10 Cross References . 96

9.10.1 The \label, \ref and \pageref Commands 99

viii Contents

9.10.2 Convenience Commands for Cross Referencing . . 102
9.10.3 Simplifying Cross References Produced by \vref . 105

IV Using Canthology to Generate HTML Files 107

10 Overview of HEVEA 109
10.1 Introduction . 109
10.2 LATEX-to-HTML Converters 109
10.3 Obtaining and Installing HEVEA 110
10.4 Running HEVEA . 111
10.5 How HEVEA Handles Unrecognised Commands 112
10.6 Extending HEVEA . 113

10.6.1 The framed package 114
10.6.2 Implementing framed.hva 116

10.7 The hevea Package . 119
10.8 The latexonly and htmlonly Environments 119
10.9 Specifying the Names of HTML Files 120
10.10Misfeatures of HEVEA . 121

10.10.1 The hevea-fix package 121
10.10.2 Removing the Pseudo Table of Contents 123
10.10.3 Automating the Workarounds 125

11 Using HEVEA with Canthology 126
11.1 Introduction . 126
11.2 The default.html Configuration Scope 127
11.3 The book:html-many-pages Configuration Scope 129
11.4 The Makefile . 130

11.4.1 Overview of Makefile Concepts and Syntax . . . 130
11.4.2 Variables Used in the Makefile 132
11.4.3 The html Target 132
11.4.4 The install Target 133
11.4.5 The clean Target 133

11.5 Customising the HTML Pages 133
11.6 Other HTML Configuration Scopes 135

Contents ix

12 Writing Documents Portable to PDF and HTML 137
12.1 Introduction . 137
12.2 How to Define Labels in a Portable Way 138
12.3 Avoid Using the \pageref Command 140
12.4 The \ifthenelse Command 142
12.5 Placement of Captions 142
12.6 Dealing with Other Portability Problems 144

V Information for Maintainers 146

13 Architecture of Canthology 148
13.1 Introduction . 148
13.2 The Java Application . 148

13.2.1 Packages and Source-code Files 149
13.2.2 Limited Use of Java Language Features 149
13.2.3 Algorithms and Source-code Files 150

13.3 Support Files . 152
13.3.1 The etc/latex Subdirectory 153
13.3.2 The etc/html-* Subdirectories 156

13.4 How Canthology Searches for Support Files 156

14 Suggestions for Future Work 158
14.1 Introduction . 158
14.2 A Wider Selection of Title-page Templates 158
14.3 Background Graphics for Title Pages 159
14.4 A Blog-to-LATEX Converter 159
14.5 Improve the Quality of Generated HTML 159
14.6 Installers for Various Operating Systems 160
14.7 Generate ebooks . 160

14.7.1 Different ebook File Formats 160
14.7.2 Using HEVEA and Calibre 161
14.7.3 Tailoring HEVEA to better Support the Generation

of ebooks . 161
14.7.4 Playing with HEVEA and Calibre 162

x Contents

14.7.5 Small Screen Sizes of ebook Readers 163
14.8 Providing Customisable Anthologies as Demos 164
14.9 Configuration Support for Additional LATEX Tools 165
14.10Add Windows Support for Generating HTML 165
14.11A Graphical User Interface 166
14.12A Web Interface . 166

Appendices 169

A Commands in the canthology package 170

B Configuration File Syntax 172
B.1 Introduction . 172
B.2 Comments . 172
B.3 Strings . 173
B.4 Identifiers . 174
B.5 Assignment statements 175
B.6 Scopes . 176
B.7 The @include statement 178
B.8 The @copyFrom statement 179
B.9 The @if-then-@else Statement 180
B.10 The @error Statement . 182
B.11 The @remove Statement 182
B.12 Functions . 183

B.12.1 Querying the Operating System 184
B.12.2 Accessing Environment Variables 184
B.12.3 Executing External Commands 184
B.12.4 Manipulating Strings and Lists 185
B.12.5 Files and Directories 186
B.12.6 Miscellaneous Functions 187

C GNU Free Documentation License 190

D The GNU General Public License 202

Contents xi

E The LATEX Project Public License 221

Bibliography 232

Colophon 234

xii Contents

Chapter 1

Introduction

1.1 What is Canthology?

Canthology is a software application that makes it easy to create an anthol-
ogy of, for example, poetry, short stories or recipes. The name Canthology
is an abbreviation of create anthology.

Canthology has been developed and tested on Gnu/Linux and Microsoft
Windows, but has a good chance of being able to work on other operating
systems if you have LATEX, Tcl and Java installed. (Installation instructions
are provided in Chapter 6.)

1.2 Uses of Canthology

The following hypothetical case studies illustrate some of the uses of Can-
thology.

1.2.1 A Tailor-made Anthology of Poetry for Education

John teaches a one-semester poetry course at university. His course in-
cludes the study of twenty poems by eighteenth century poets. In previous
years, he required his students to purchase a specific anthology of poems,
because that was the only book he knew of that contained all the poems

1

2 Chapter 1. Introduction

on his course. However, the book was unpopular with students for two
reasons. First, the book was bulky and heavy: it contained hundreds of
poems and was over 800 pages long. Second, the book was expensive;
students did not like having to pay so much for a book when they made
use of just a small fraction of its contents.

Canthology enabled John to eliminate the need for the expensive and
bulky book for his course. He achieved this as follows:

1. All the poems on John’s course are old enough that the copyright on
them has expired. John decided to use an Internet search engine to
find the text of the poems online. He quickly found the text of all
twenty poems and saved them onto his own computer, each poem in
a separate file.

2. John spent a few minutes editing the text of each poem, putting it
into the straightforward markup format required by Canthology.

3. Then, John wrote a configuration file that instructed Canthology to
combine the twenty files containing poems into an anthology, com-
plete with a table of contents.

4. By adding a particular markup command to each poem, John ar-
ranged for the name of each poem’s author to be displayed twice:
once above the poem, and again in the table of contents (where it
appeared underneath the poem’s title).

5. The only thing missing was a title page for the anthology. Rather
than create one from scratch, John decided to use a template title
page supplied with Canthology. He updated his configuration file to
instruct Canthology to replace the template’s placeholders (for the
book’s title and author/editor) with his desired text.

6. Having edited the configuration file, John executed the canthology

command. Within a few seconds, his anthology of poetry was created
in the form of a PDF file.

Now when John teaches his course, he gives the customised anthology
of poems to his students as a PDF file. Some students read it on their

1.2. Uses of Canthology 3

laptop or tablet computers. Students who prefer physical books over elec-
tronic ones can print the anthology on a university laser printer and add the
printed pages to a ring binder containing their handwritten course notes.
The students are happy: printing the tailor-made anthology for the course
is much cheaper than buying an 800-page book; and the tailor-made an-
thology is much slimmer too.

1.2.2 An Anthology of Personal Accounts

Mary is a member of a minority group that faces widespread discrimi-
nation. She wants to create an anthology of personal accounts written
by other members of her minority group. She has two goals for the an-
thology: (1) to provide inspiration and hope for isolated members of the
minority group; and (2) to educate readers from mainstream society about
the prejudice faced by the minority group.

Mary finds people who are willing to contribute to the anthology. She
asks each contributor to format their submissions using the simple markup
format required by Canthology.

When Mary receives all the contributions, she writes a configuration
file that instructs Canthology to combine the contributions into an anthol-
ogy, complete with a title page and table of contents. Mary has a pho-
tograph she wants to use as a background image on the title page of the
anthology. Canthology makes it easy to do this.

When the anthology of personal accounts is complete, Mary is faced
with several possibilities. She could submit it to a publisher, in the hope
of getting it published as a paperback book that could be stocked in shops.
Alternatively, with the aid of a print-on-demand company (for example,
www.lulu.com), she could self-publish the book and sell it though Ama-
zon. Or she could instruct Canthology to convert the book into HTML
format and host it on a website.

1.2.3 Showcasing the Expertise of Employees

Jane is the owner and manager of a consultancy company. Jane is con-
fident that her employees are more highly skilled and provide better cus-

4 Chapter 1. Introduction

tomer service than employees in most competing companies. However,
she has been struggling to find a good way to communicate this message
to customers, and she is slowly losing business to inferior competitors who
have a larger advertising budget or who undercut her on price.

When Jane discovers Canthology, she develops a plan. Demand for
consultancy services tends to be either feast or famine. So, whenever there
is a lack of consultancy work to do, Jane gets her underutilised staff to
document useful tips in the form of short articles. When a dozen useful
tips have been written, Jane uses Canthology to create an anthology, Tips
from the Experts, in both PDF and HTML formats.

Jane uses the PDF file to print a booklet that is distributed to customers
on her company’s mailing list. Jane integrates the HTML version of the
anthology into her company’s website, where it soon becomes indexed by
Internet search engines, thus directing potential customers to her company.

1.2.4 Product Manuals

David coordinates the writing of product manuals at a software company.
He knows that although Canthology can associate a different author with
each chapter or section, that is an optional feature of Canthology. Be-
cause of this, Canthology can be used to write a “normal” book—such
as a product manual—that has only one listed author. Several features of
Canthology make David realise it is especially suited for writing product
manuals.

First, because Canthology-based documents are written as plain text
with markup commands, his technical writers can use text-oriented tools
for working with Canthology. These include: their favourite text editors;
utilities such as diff and grep, and a source-code control system, such as
SourceSafe, CVS, Subversion, Git or ClearCase.

Second, it is trivially easy for Canthology to produce a document in
multiple output formats, including PDF files formatted for different pa-
per sizes, and HTML. Furthermore, it is possible to write a shell script,
Makefile or Ant rule to automate this process. His team now produces
PDF product manuals formatted for: A4 paper for European customers,
US Letter paper for American customers, A5 paper for easier viewing on

1.3. How Canthology Works 5

a computer screen or tablet computer, and HTML for browsing on his
company’s website.

While David was evaluating Canthology, he discovered that the Can-
thology User Guide is itself written as a Canthology-based document. He
was able to play around with the source of this 200-page document to ex-
periment with the ergonomics of using Canthology and verify how easy
it is to produce a product manual in HTML and PDF formats, even for
multiple paper sizes.

1.3 How Canthology Works

Canthology is a simplification wrapper for LATEX (pronounced “lay-tech”
or “lah-tech”), so I will start by providing a brief overview of LATEX, and
afterwards explain how Canthology simplifies the use of LATEX.

1.3.1 A Brief Overview of LATEX

LATEX is a markup language for writing documents. This means a LATEX
document consists of plain text with embedded commands that specify
how to markup (that is, format) the text. As an example, Figure 1.1 shows
the start of the LATEX file that I used for writing this chapter. I have used a
bold font to highlight the markup commands.

Figure 1.1: LATEX source for the start of this chapter

\chapter{Introduction}

\section{What is Canthology?}

Canthology is a software application that makes it easy to create an

anthology of, for example, poetry, short stories or recipes. The name

\emph{Canthology} is an abbreviation of \emph{create anthology}.

Canthology has been developed and tested on Gnu/Linux and Microsoft

Windows, but has a good chance of being able to work on other operating

systems if you have \LaTeX{}, Tcl and Java installed.

6 Chapter 1. Introduction

As you can see, the \chapter command starts a chapter, \section

starts a section, \emph uses italics to emphasise a word or phrase, and
\LaTeX produces the LATEX logo. Parameters, if any, to those commands
are enclosed in braces.

One benefit of LATEX is that it enables authors to focus on the content
and logical structure of what they are writing, rather than be distracted by
formatting issues, such as font sizes and the amount of vertical space to
leave after a chapter or sectional title.

When using LATEX to write a book, it is common practice to write each
chapter in a separate file, and then write a “root” file that uses an \input

command for each of those chapter files. When the book is complete,
LATEX can process the root file (and all the files it inputs) to convert the
book into a nicely-formatted document in, say, PDF, PostScript or HTML
formats.

It is common for the start of a LATEX document to contain many markup
commands (for example, to specify the page dimensions and fonts to be
used, and to format a nice looking title page), which can make it difficult
to read and edit. However, once that initial hurdle of markup commands
has been passed, the rest of the document tends to have only occasional
markup commands, and thus is easy to read and edit.

1.3.2 Canthology’s Approach to Simplifying LATEX

Canthology uses a combination of techniques to put a simplification wrap-
per around LATEX.

The first simplification technique employed by Canthology is to sup-
port the following clear division of labour:

• A contributor to an anthology is a person who writes a chapter (or
perhaps a section within a chapter). Contributors have to learn how
to use just a tiny subset of the markup commands provided by LATEX.
Thus, the LATEX learning curve for contributors is minimal—typically,
less than 30 minutes.

• The editor of an anthology needs to learn a slightly larger subset of

1.3. How Canthology Works 7

LATEX markup commands, and must also learn how to use Canthol-
ogy.

• A typographer knows how to customise LATEX to modify the “look
and feel” of the output it produces.

Most anthologies contain material from, say, ten or twenty contributors
and are organised by just one editor. Thus, simplifying the LATEX learning
curve for the many contributors has a far bigger impact in simplifying the
overall project than does simplifying the LATEX learning curve for one edi-
tor. Part I of this manual discusses the very few LATEX markup commands
that will be sufficient for the needs of most contributors.

Another simplification technique relies on the 80/20 Principle, which
is also known as the Pareto Principle.1 Put simply: 80% of the markup
commands in a LATEX document are concentrated in 20% of the docu-
ment’s content. Rather than try to simplify an entire LATEX document,
Canthology simplifies just the 20% that contains the most markup. These
simplifications benefit the editor of an anthology.

The final simplification technique is that the default settings and tem-
plate files supplied with Canthology are likely to provide “good enough”
typography for most uses. This eliminates the need for a dedicated typog-
rapher. However, if an editor is not satisfied with the range of typographi-
cal choices provided by Canthology, then she can read books about LATEX
(such as those suggested in Section 9.2 on page 83) to learn more about
how to make the typographical customisations herself. Alternatively, the
editor could find somebody with a good knowledge of LATEX to make the
customisations for her.

1http://en.wikipedia.org/wiki/Pareto_principle

Part I

Information for Contributors

8

Introduction to Part I

If you are contributing to an anthology, then you want to focus on writing
your contribution. You do not want to be distracted by having to adhere to
complex instructions on how to format your contribution, or by having to
write your contribution with an unfamiliar word processor.

Canthology tries to minimise such distractions. You can use what-
ever text editor you like best, such as Notepad, UltraEdit, TextMate, Vi
or Emacs. Alternatively, you can use your favourite word processor and
save your contribution as a plain text file. The only requirement is that
you must put some simple markup commands in your contribution.

The two short chapters in Part I provide all the information you are
likely to need to create a Canthology-compatible contribution.

9

Chapter 2

Basic Markup

2.1 File Name

You should write your contribution in a file that has a ".tex" extension,
for example, what-i-did-last-summer.tex. The name of the file should
contain only letters, numbers, hyphens (-) and underscores (_).

The person who is editing the anthology may suggest a file name that
you should use. For example, the editor may wish you to use your own
name as the file name (john-smith.tex).

2.2 Markup Commands for a Short Story

You should write your contribution as a plain text file with embedded com-
mands that specify how to markup, (that is, format) the text. Figure 2.1
shows an example of a short story that might be included in an anthology.
The markup commands are shown in a bold font. Figure 2.2 shows how
the story might be formatted in the final anthology.

Although the example is very short, it illustrates most of the markup
commands that a contributor needs to be familiar with.

The \section* command takes one parameter (enclosed in braces) that
specifies the name of the short story.

10

2.2. Markup Commands for a Short Story 11

Figure 2.1: A short story: markup

\section*{What I Did Last Summer}

\sectionAuthorInfo{John Smith}{England}

Last year, I got a summer job working at a local factory.

Unfortunately, with the recession, the manager wasn’t hiring anyone

this year. Most of my friends had summer jobs, so I got \emph{very}

bored hanging out by myself.

To keep myself occupied, I decided to do some volunteer work at a local

community centre. While there, I worked at a wide variety of tasks. I

swept the floor. I made refreshments during coffee breaks. I proofread

documents. I ordered new stationary supplies. Occasionally, I staffed

the reception desk. I helped people with poor literacy skills to fill

in forms. I repainted a corridor. And all that was during my

\emph{first week} there!

I volunteered at the centre five days a week, for most of the summer,

taking just a two-week break to go on holidays. It was the most

enjoyable job I’ve ever had.

Figure 2.2: A short story: formatted output

What I Did Last Summer
John Smith, England

Last year, I got a summer job working at a local factory. Unfortunately, with the reces-
sion, the manager wasn’t hiring anyone this year. Most of my friends had summer jobs,
so I got very bored hanging out by myself.

To keep myself occupied, I decided to do some volunteer work at a local community
centre. While there, I worked at a wide variety of tasks. I swept the floor. I made
refreshments during coffee breaks. I proofread documents. I ordered new stationary
supplies. Occasionally, I staffed the reception desk. I helped people with poor literacy
skills to fill in forms. I repainted a corridor. And all that was during my first week there!

I volunteered at the centre five days a week, for most of the summer, taking just a
two-week break to go on holidays. It was the most enjoyable job I’ve ever had.

12 Chapter 2. Basic Markup

The \sectionAuthorInfo command takes two parameters: the first
specifies the name of the contributor, and the second specifies some back-
ground information, such as the contributor’s location, age or occupation.

Finally, the \emph command is used to emphasise a word or phrase,
and one or more blank lines are used to separate paragraphs.

By comparing Figures 2.1 and 2.2, you may also notice that (aside
from blank lines), it does not matter where you put line breaks in an input
file: the LATEX typesetting system (upon which Canthology is based) will
decide the optimal place for lines breaks in the output file.

2.3 Markup for a Chapter-length Contribution

In the previous section, I explained how to format your short story as a
section (within a chapter). However, if the editor instructs you to submit
your contribution as an entire chapter, then you should use the \chapter

and \chapterAuthorInfo commands. For example:

\chapter{What I Did Last Summer}

\chapterAuthorInfo{John Smith}{England}

Last year, I got a summer job ...

If you want to divide your chapter into several sections, then you can use
one of the following commands:

\section*{title}

\section{title}

\anonymoussection

You have already seen the \section* command: it formats the title

text without a sectional number.
The \section command formats the title text with a sectional num-

ber. For example, when writing this chapter, I used the following com-
mand at the start of this section:

\section{Markup for a Chapter-length Contribution}

2.4. Markup Commands for Poetry 13

You can use the \anonymoussection command to start a new section
but not assign a title for it. For example:

Then, in the rudest manner he could display, he turned

his back deliberately on Sandeman and walked out of

the room.

\anonymoussection

In the company of Adela he tried to forget the little

contretemps.

produces the following output:

Then, in the rudest manner he could display, he turned his back
deliberately on Sandeman and walked out of the room.

∗ ∗ ∗ ∗ ∗

In the company of Adela he tried to forget the little contretemps.

As you can see, the \anonymoussection command uses blank space and
a row of ∗ symbols to mark the end of one section and the start of another.

2.4 Markup Commands for Poetry

The example in Figure 2.3 illustrates the markup you should use for a
poem, and Figure 2.4 shows the formatted output. (By the way, this ex-
ample uses -- and --- to produce dashes of various lengths; such dashes
will be discussed in Section 3.3 on page 20.)

You use the \poemtitle command to specify the title of the poem, and
\poemAuthorInfo to specify both the name of the contributor and some
background information about that contributor, such as location, occupa-
tion or age.

14 Chapter 2. Basic Markup

Figure 2.3: A poem: LATEX markup

\poemtitle{Carpe Diem}

\poemAuthorInfo{William Shakespeare}{1564--1616}

\begin{verse}[16em]

O mistress mine, where are you roaming? *
O stay and hear! your true-love’s coming *
That can sing both high and low; \\

Trip no further, pretty sweeting, *
Journey’s end in lovers’ meeting--- *
Every wise man’s son doth know.

What is love? ’tis not hereafter; *
Present mirth hath present laughter; \\

What’s to come is still unsure: *
In delay there lies no plenty,--- *
Then come kiss me, Sweet and twenty, *
Youth’s a stuff will not endure.

\end{verse}

Figure 2.4: A poem: formatted output

Carpe Diem
William Shakespeare, 1564–1616

O mistress mine, where are you roaming?
O stay and hear! your true-love’s coming
That can sing both high and low;
Trip no further, pretty sweeting,
Journey’s end in lovers’ meeting—
Every wise man’s son doth know.

What is love? ’tis not hereafter;
Present mirth hath present laughter;
What’s to come is still unsure:
In delay there lies no plenty,—
Then come kiss me, Sweet and twenty,
Youth’s a stuff will not endure.

2.4. Markup Commands for Poetry 15

The poem itself is typeset in the verse environment, that is, between
the \begin{verse} and \end{verse} commands. Within a verse envi-
ronment, you should do the following:

• Leave a blank line between each stanza.

• At the end of each line—except the last line of a stanza—use the *
command. This forces a line break in the formatted output, while
preventing a page break at that line.

• If you feel it is acceptable to have a page break in mid-stanza, then
you can use the \\ command instead of *. For example, Figure 2.3
uses \\ when a line ends with a semicolon.

Note that using \\ does not force a page break at that point; it merely
indicates that a page break is acceptable.

There is one last point to note about the typesetting of a poem. The
\begin{verse} command can take an optional parameter, which, if used,
is enclosed in square brackets. You can see an example of this in Fig-
ure 2.3: \begin{verse}[16em]. The optional parameter specifies a size,
which can be specified in a variety of units, including point (pt), millime-
tre (mm), centimetre (cm), inch (in), ex (ex) or em (em).1

If you do not specify the optional parameter to the verse environment,
then the poem will be typeset slightly indented from the left-side margin.
For example:

O mistress mine, where are you roaming?
O stay and hear! your true-love’s coming
That can sing both high and low;
. . .

If you do specify an optional size parameter, then the verse environment
pretends that the length of each line in the poem is the specified size, and

1A point is 1/72.27 inch. An ex is roughly the height of the letter “x” in the current font. An em is roughly
the width of an “M” in the current font, which is often equal to the font size. For example, if the font size is
10pt, then 16em is equivalent to 160pt, but if you change the font size to be 12pt, then 16em will be equivalent
to 192pt. People who design document layouts sometimes like to express sizes in ex or em units because this
enables the sizes to be scaled automatically if the font size is changed.

16 Chapter 2. Basic Markup

centres the poem on the page based on that pretended line length, as shown
in Figure 2.4. As a contributor, you should not worry about specifying an
accurate value for the optional parameter to the verse environment. (If
you want, just omit the optional parameter and its square brackets.) If the
editor of the anthology decides to centre poems, then she can use a trial-
and-error approach with a document previewer to choose a suitable value
for the optional parameter to the verse environment.

You might want your poem to be formatted in a very specific way,
for example, perhaps every second line of the poem should be indented.
Arguably, such formatting decisions should be made by the editor of an
anthology, rather than by each individual contributor, so there can be con-
sistency of formatting across all poems in the anthology. However, if you
feel strongly that your poem should be formatted in a particular way, then
you should contact the anthology’s editor to express your wishes.

2.5 Special Characters

The markup commands used in Canthology come from the LATEX typeset-
ting system, upon which Canthology is based. The following characters
have special meanings to LATEX:

$ % ˜ _ ˆ \ & { }

If you need to embed any of those characters in your contribution, then
you should use the appropriate command shown in the table below.

2.5. Special Characters 17

Command Output
\# #
\$ $
\% %
_ _
\ˆ{} ˆ
\& &
\{ }
\} {
\textbackslash{} \
\textasciitilde{} ~

For example:

I can see the \# symbol on my telephone keypad.

produces the following output:

I can see the # symbol on my telephone keypad.

As you can see from the table, most of the special symbols can be typeset
by preceding them with \. The most notable exception to that rule is the
\ character itself. If you want to use that character in a document, then
use \textbackslash{} (the {} indicates that this command does not take
a parameter). If you accidentally use \\ instead, then you will force a line
break in the output. For example:

This is a \backslash{}, but this is a line\\break.

produces the following output:

This is a \, but this is a line
break.

The % character starts a comment that continues until the end of the
line. Comments are not copied into the output document. For example,
the following example accidentally uses % instead of \%:

Pareto found that 80% of the wealth in Italy was

owned by just 20% of the population.

18 Chapter 2. Basic Markup

so it produces the following incorrect output:

Pareto found that 80owned by just 20

The fix is to replace % with \% in the input document:

Pareto found that 80\% of the wealth in Italy was

owned by just 20\% of the population.

so it produces the following correct output:

Pareto found that 80% of the wealth in Italy was owned by just
20% of the population.

Chapter 3

More Markup Commands

3.1 Introduction

The previous chapter introduced a few markup commands that will be
sufficient for most contributions to an anthology. This chapter discusses
some more LATEX markup commands that are less likely to be required by
contributors.

3.2 Single and Double Quotes

Your keyboard is likely to have three quote symbols: the open single quote
(‘), the close single quote(’) and the double quote ("). You should not use
the double quote character when writing a LATEX document. Instead, use
two open quote characters (‘‘) to obtain an open double quote (“) and use
two close quote characters (’’) to obtain a close double quote (”). For
example:

Some people like ‘single quotes’,

but others prefer ‘‘double quotes’’.

produces the following output:

Some people like ‘single quotes’, but others prefer “double quotes”.

19

20 Chapter 3. More Markup Commands

3.3 Hyphens and Dashes

You should use the - character when writing a hyphenated word. For
example:

My sister-in-law saw a man-eating shark in a low-budget

movie.

produces the following output:

My sister-in-law saw a man-eating shark in a low-budget movie.

If you are writing a time period, a number range or a telephone number,
then you should use --. LATEX typesets this as an en dash, which is slightly
longer than a hyphen. For example:

The years 2002--2006 were happy ones.

This house can accommodate 4--6 people.

My telephone number is 555--26--85--93.

produces the following output:

The years 2002–2006 were happy ones. This house can accom-
modate 4–6 people. My telephone number is 555–26–85–93.

A long dash used for punctuation is called an em dash. You use --- to
obtain an em dash. For example:

You are the person---the only person---who helped me.

produces the following output:

You are the person—the only person—who helped me.

3.4 Footnotes

You can use the \footnote command to insert a footnote. It takes one
parameter that specifies the text of the footnote. For example:

3.5. The quote Environment 21

A gnu\footnote{Also known as a wildebeest.} is a type of

animal.

produces the following output:

A gnu1 is a type of animal.

3.5 The quote Environment

A LATEX construct of the form \begin{name}...\end{name} is called a
name environment. One such construct is the verse environment, which I
discussed in Section 2.4 on page 13. Another is the quote environment,
which you can use to quote short pieces of text. For example:

In his autobiography, Nelson Mandela writes:

\begin{quote}

No one had ever suggested to me how to go about

removing the evils of racial prejudice, and I had

to learn by trial and error.

\end{quote}

Most people who want to bring about significant

social change face a similar problem: many skills

they need to do so are not taught in schools or

universities.

produces the following output:

In his autobiography, Nelson Mandela writes:

No one had ever suggested to me how to go about re-
moving the evils of racial prejudice, and I had to learn
by trial and error.

Most people who want to bring about significant social change
face a similar problem: many skills they need to do so are not
taught in schools or universities.

1Also known as a wildebeest.

22 Chapter 3. More Markup Commands

By the way, LATEX ignores excess spaces before and between words.
This is useful, because it means you can indent the contents of a quote

environment to better show the structure of a document. For example,
the previous example could be written with some indentation as shown
below:

In his autobiography, Nelson Mandela writes:

\begin{quote}

No one had ever suggested to me how to go about

removing the evils of racial prejudice, and I had

to learn by trial and error.

\end{quote}

Most people who want to bring about significant

social change face a similar problem: many skills

they need to do so are not taught in schools or

universities.

This indentation used inside the quote environment does not affect the
output produced.

3.6 The itemize and enumerate Environments

You can use the itemize environment to create a bullet-point list. Each
item in the list is started with the \item command. For example:

Our priorities are as follows:

\begin{itemize}

\item Relax and have a good time.

\item Find somebody to love.

\item Earn enough money to pay the bills.

\end{itemize}

produces the following output:

Our priorities are as follows:

• Relax and have a good time.

3.7. Next Steps 23

• Find somebody to love.
• Earn enough money to pay the bills.

The enumerate environment works almost identically to the itemize envi-
ronment, except that each item in the list is prefixed with a number rather
than a bullet point. For example:

Our priorities are as follows:

\begin{enumerate}

\item Relax and have a good time.

\item Find somebody to love.

\item Earn enough money to pay the bill.

\end{enumerate}

produces the following output:

Our priorities are as follows:

1. Relax and have a good time.
2. Find somebody to love.
3. Earn enough money to pay the bill.

3.7 Next Steps

When you have finished writing your contribution, you should send it to
the editor of the anthology. Do not worry about the possibility of making
mistakes in the markup commands you have used. When the anthology’s
editor runs your contribution through LATEX, she will see error messages
for incorrect use of markup commands, so she will be able to identify and
fix the errors.

Part II

Background Information for
Editors

24

Introduction to Part II

If you are going to be the editor of an anthology, then you will have to learn
how to use Canthology. However, you first need to know a little about two
underlying technologies: LATEX and Config4*. The two chapters in Part II
provide the relevant information.

25

Chapter 4

LATEX History and Variants

4.1 Introduction

Although Canthology provides a simplification wrapper around LATEX,
Canthology does not hide LATEX completely. Because of this, you will
need to be familiar with some LATEX concepts and terminology. This chap-
ter explains some LATEX issues that will make it easier to understand how
Canthology works.

4.2 A Short History of TEX and LATEX

Within the printing industry, type means a printed character, and to typeset
means to combine individual types to form words, lines and (eventually)
a complete page.

In 1977, a mathematician and computer scientist called Donald Knuth
was frustrated at the poor-quality typesetting of a book he had written. He
decided to design his own typesetting system so his future books could
look better. He spent more than a decade designing and implementing
a computer program called TEX (usually pronounced “tech” by English
speakers) for typesetting documents.

TEX was developed at a time when there was no standardisation of how
to control different types of printers. Knuth worked around this problem

26

4.2. A Short History of TEX and LATEX 27

with a two-step approach.

• A person writes a TEX-based document in a file called, for exam-
ple, my-document.tex, and processes this with TEX by executing the
command:

tex my-document.tex

Doing that produces a file called my-document.dvi. The ".dvi" ex-
tension stands for “device independent”.

• Another program is executed to convert my-document.dvi into the
format required to drive a particular type of printer.

This two-step approach has enabled TEX to survive technological changes.
For example, when computers with high-resolution displays were intro-
duced, on-screen previewers for DVI files were developed. When the
PostScript printer-control language was invented, DVI-to-PostScript con-
verters were developed. And when PDF was invented, DVI-to-PDF con-
verters were developed.

Although TEX is powerful and can produce beautiful-looking docu-
ments, many people find it difficult to use because the TEX markup com-
mands are low level. Over the years, this has resulted in attempts by dif-
ferent people to implement simplification wrappers around TEX. The most
popular of these is called LATEX, which was initially developed during the
1980s. LATEX provides high-level markup commands—such as \chapter

and \section—that are easier to use than the more primitive markup com-
mands provided by TEX.

Processing a LATEX-based document is similar to processing a TEX-
based document, except that you use the latex command instead of tex.
For example, the following commands convert my-document.tex into my-

document.dvi and then into my-document.ps (that is, a PostScript file):

latex my-document.tex

dvips my-document.dvi

28 Chapter 4. LATEX History and Variants

4.3 Structure of a LATEX Document

Figure 4.1 shows the high-level structure of a book written in LATEX.

Figure 4.1: Structure of a LATEX document
\documentclass[12pt,oneside]{book}

\usepackage{color}

\usepackage[english]{babel}

... % Other preamble commands go here

\begin{document}

\frontmatter

\input{titlepage.tex}

\input{copyright.tex}

\tableofcontents

\input{preface.tex}

\mainmatter

\input{chapter-1.tex}

\input{chapter-2.tex}

\input{chapter-3.tex}

\input{chapter-4.tex}

\appendix

\input{appendix-a.tex}

\input{appendix-b.tex}

\backmatter

\input{glossary.tex}

\end{document}

The file starts with a \documentclass command that specifies the doc-
ument’s class (that is, type) is a book. This causes LATEX to load a file
called book.cls and execute its contents. Doing that causes commands
such as \part, \chapter and \section to be defined. The book.cls

file also defines typographical rules for typesetting a book. By default,
those rules specify, among other things, that the document is typeset in
a 10 pt font for two-sided printing on US Letter-size paper. The optional
arguments (indicated between [and]) override some of those defaults by
specifying use of a 12 pt font and one-sided printing.

4.4. The memoir Class 29

The standard distribution of LATEX contains several class files, includ-
ing book.cls, report.cls, article.cls and letter.cls. This makes it
possible to use LATEX to create several types of document easily.

The term package refers to a file that defines add-on commands for
LATEX. Package files have a ".sty" extension (because package files were
originally known as style files). The \usepackage command instructs
LATEX to load the ".sty" file specified as a parameter and execute its con-
tents. For example, \usepackage{color} instructs LATEX to load the file
color.sty. Options, if any, to a package are specified between [and].

Preamble refers to the part of a LATEX file between the \documentclass
and \begin{document} commands. As shown in Figure 4.1, the preamble
can contain \usepackage commands. The preamble can contain other
types of commands too. Some people define a few additional commands
in the preamble; but if a lot of new commands are to be defined, then it is
best to put them in a package.

The document environment (everything between \begin{document}

and \end{document}) contains the actual text of the document. If the
document is just a few pages long, then its text might be written directly
between \begin{document} and \end{document}. But, as shown in Fig-
ure 4.1, multi-chapter documents are often written using a separate file for
each chapter, in which case a series of \input commands is used to read
and process those separate files.

If the document is a book, then its contents can be grouped into front
matter, main matter and back matter. Only chapters and sections in the
main matter are numbered. Unnumbered chapters sometimes found in
the front matter include Acknowledgements, Preface or Foreword. Those
found in the back matter might include Glossary, Index and Bibliography.

Any main-matter chapter or section appearing after \appendix has its
title typeset as an appendix rather than as a chapter or section.

4.4 The memoir Class

LATEX offers the benefit of being significantly easier to use than TEX. How-
ever, it also suffers from a drawback: the predefined document classes

30 Chapter 4. LATEX History and Variants

(book, article, and so on) adopt a “take it or leave it” attitude to typeset-
ting. For example, users do not have an easy way to adjust the typesetting
of chapter or section headings.

Partially to overcome this drawback, Peter Wilson implemented the
memoir class. This class provides users with commands to adjust many
aspects of document typesetting. Another benefit of the memoir class is
that it incorporates the functionality of dozens of popular packages. This
means a memoir-based document tends to have fewer \usepackage com-
mands cluttering up its preamble than a similar book-based document.
More importantly, it means that documentation for the functionality of
many packages can be centralised in the manual for the memoir class [14]
rather than be scattered over dozens of short documents (a separate docu-
ment for each package).

The functionality of the memoir class is a superset of that of the book

class. Thus, if you start writing a document using the book class and even-
tually discover it is too inflexible to suit your needs, then you should be
able to switch to using the memoir class without having to make anything
more than (at most) a few trivial changes in your existing document.

4.5 Support for Colour and Graphics

The initial development of TEX predated widespread support for colour in
computers and printers. It also predated most graphic-file formats, such as
EPS, TIFF, GIF, JPEG, PDF and PNG. Despite this, TEX and LATEX pro-
vide good support for the use of colour and graphics in documents. This is
because Donald Knuth had the foresight to provide a \special command
in TEX. This command writes its argument directly into the DVI file being
generated, and it is then up to a DVI-to-whatever converter to interpret
that argument. This provides an open-ended extension mechanism that
permits TEX (and LATEX) to support, among other things, the use of colour
and graphics in documents. The \special command is also used to im-
plement hypertext links when a document is converted into PDF format.

Over the years, individuals have developed DVI-to-whatever convert-
ers independently of each other. The independent nature of their work has

4.5. Support for Colour and Graphics 31

resulted in some DVI converters expecting the argument to a \special

command to formatted one way, and other DVI converters expecting the
argument to be formatted a different way. Obviously, this has the potential
to result in widespread incompatibilities. However, a combination of two
things save the day.

First, DVI converters ignore any \special commands that they do not
understand. This allows the conversion of documents containing unsup-
ported \special commands to degrade gracefully.

Second, packages that provide a simplification wrapper around the
low-level \special command also protect document authors from the
\special command’s potential to introduce incompatibilities. This can
be illustrated with the graphicx package [3], which provides commands
to scale and rotate text, and to include graphic files. An option to this
package specifies which DVI converter you plan to use. For example:

\usepackage[dvips]{graphicx}

One of the commands provided by this package is \includegraphics,
which you can use to include (and, optionally, scale) a graphics file:

\includegraphics[scale=0.7]{my-diagram}

That command executes the \special command appropriate for the DVI
converter specified in the \usepackage command. If the document’s au-
thor switches from dvips to using another DVI converter, then changing
the option to the \usepackage command will be sufficient to change the
\special commands executed by \includegraphics.

The main irritation I have when using graphics in a LATEX document
is that each DVI converter supports a subset of graphic-file formats. For
example, I used to use on-screen DVI previewer that could process only
".eps" files, while the DVI converter I used to produce a PDF file could
process ".jpg", ".png" and ".pdf" files. The lack of overlap in graphic
file formats supported by the two converters meant I had to provide the
same graphic in several file formats, for example, my-diagram.eps and
my-diagram.jpg. If you encounter this issue, then there are several ways
to deal with it.

32 Chapter 4. LATEX History and Variants

First, some drawing editor applications can save a graphic in a variety
of file formats.

Second, ImageMagick1 is a collection of command-line utilities for ma-
nipulating graphic files. Its convert utility can read a graphic file in one
format and convert it to another file format. For example:

convert my-diagram.eps my-diagram.jpg

Finally, you could decide to forego use of a DVI previewer and instead
use PDF documents for both on-screen previewing and printing.

4.6 Variations of TEX and LATEX

Over the years, alternative implementations of TEX (and LATEX) have been
developed to adapt to changes in technology.

4.6.1 pdfTEX and pdfLATEX

pdfTEX (and pdfLATEX) can generate a PDF file directly from a ".tex" file.
For example:

pdflatex my-document.tex

Many people find this to be more convenient than the two-step process of
generating a ".dvi" file, and then converting this into a ".pdf" file. The
out-of-the-box configuration for Canthology uses pdflatex.

4.6.2 XeTEX and XeLATEX

The nice thing about standards is that there are so many of them
to choose from. Furthermore, if you do not like any of them,
you can just wait for next year’s model.
— Andrew S. Tanenbaum

1www.imagemagick.org

4.6. Variations of TEX and LATEX 33

This has certainly been true for character sets. In brief, a (coded) char-
acter set is a convention in which numbers are used to denote characters
(that is, letters, digits, punctuation, and so on). For decades, there were al-
most as many character sets as there were countries in the world, and this
made it difficult to write, say, a Greek document on a French computer, or
vice versa. The lack of an international, standardised character set posed
difficulties for writing TEX- or LATEX-based documents that contained, say,
accented characters such as á and ö. A two-part approach was used:

1. Commands such as \’{a} and \"{o} were used in a ".tex" file to
represent accented characters like á and ö. This made it difficult for a
person to write non-English text, and also made it difficult for a spell
checking program to verify the spelling of words in a ".tex" file.

2. The output file (in, say, DVI, PostScript or PDF format) would “fake”
an accented letter by drawing an unaccented letter, and then drawing
an accent character over it. Such “fake” accented characters made
it difficult, if not impossible, to search through a document for text
containing an accented character.

Unicode is a standardised, universal (coded) character set that has been
gaining popularity since its introduction in the early 1990s. XeTEX (and
XeLATEX) is an redesigned implementation of TEX (and LATEX) that pro-
vides built-in support for Unicode. This support eliminates the problems
associated with TEX’s traditional two-part approach for dealing with ac-
cented characters. The ".dvi" file format does not support the use of Uni-
code characters, so the designers of XeTEX have defined their own output
file format, which has a ".xdv" extension. An XDV-to-PDF converter is
available but on-screen previewers for XDV files are not yet widely avail-
able.

4.6.3 Generating HTML from LATEX

The author of a document might want to provide the document as a PDF
file for printing, and also as a collection of HTML pages that can be
browsed casually on a website. To satisfy this need, several people have

34 Chapter 4. LATEX History and Variants

(independently) developed LATEX-to-HTML translators. Unfortunately, all
LATEX-to-HTML translators have limitations. This is unavoidable because
HTML is not as powerful as LATEX, particularly when it comes to typeset-
ting mathematical formulas.

For example, consider the following formula:

f =
π
√
x2y + 5

z
That formula is simple enough that a LATEX-to-HTML translator should
be able to translate it into HTML that displays an accurate representa-
tion. However, if you write increasingly complex formulas in LATEX, then
there will come a point where a formula cannot be translated into HTML
that displays an accurate representation—simply because of limitations in
HTML. At this point, rather than generate HTML that displays an inaccu-
rate representation of the formula, a LATEX-to-HTML converter might use
LATEX to typeset the formula, and then use a utility to render the output as
a graphic image. This graphic image is then displayed in a HTML page.
The resulting HTML page may look nice. But, if a user “zooms in” to
display the web page’s text in a larger font size, then the graphic image
of the mathematical formula will also be magnified, which will result in it
appearing pixelated, as shown in Figure 4.2.

Figure 4.2: A pixelated mathematical formula

Another common limitation is that a LATEX-to-HTML converter will
know how to process built-in LATEX commands plus the commands de-
fined in a small number of well-known packages, but will not be able
to process LATEX documents that make use of arbitrary packages. Some
LATEX-to-HTML converters permit users to write code to “teach” the con-
verter about commands defined in other packages. Unfortunately, there is

4.6. Variations of TEX and LATEX 35

no standardisation across LATEX-to-HTML converters of how to write such
teaching code.

Chapter 5

Overview of Configuration
Syntax

5.1 Introduction

You control the behaviour of Canthology by editing entries in its configu-
ration file. I will explain the meaning of the entries in the Chapter 7. But
first (in this chapter), I will provide an overview of the syntax used in the
configuration file. This overview will be sufficient to get you started using
Canthology. Later on, you might want to read Appendix B to get complete
details of the syntax.

By the way, the configuration syntax used by Canthology is called Con-
fig4* (pronounced “config for star”).1 This syntax is not specific to Can-
thology, so you may see it being used in some other software applications.

5.2 Syntax

Figure 5.1 on the next page provides a simple example of a Config4* con-
figuration file.

Comments, like the one shown in line 1, start with # and continue until
the end of the line. Most of the lines in a configuration file contain assign-

1www.config4star.org

36

5.2. Syntax 37

Figure 5.1: Example configuration file
1 # this is a comment

2 name = "Fred";

3 greeting = "hello, " + name;

4 some_names = ["Fred", "Mary", "John"];

5 more_names = ["Sue", "Ann", "Kevin"];

6 all_names = some_names + more_names;

7 application.defaults {

8 timeout = "2 minutes";

9 log {

10 dir = "C:\foo\logs";

11 level = "0";

12 }

13 }

14 one_application {

15 @copyFrom "application.defaults";

16 log.level = "1";

17 }

18 another_application {

19 @copyFrom "application.defaults";

20 timeout = "30 seconds";

21 }

ment statements. These are of the form name=value, where the value can
be a string (line 2) or a list of strings (line 4). You can use the + operator to
concatenate both strings (line 3) and lists (line 6). Assignment statements
are terminated with a semicolon.

String values are usually written as a sequence of character enclosed
within double quotes, for example, "Fred". Within such a string, % acts as
an escape character. For example, %n denotes a newline character, and %"

denotes a double quote.2

A configuration file can contain named scopes (lines 7, 9, 14, and 18
in Figure 5.1). Scopes can be nested (line 9) and re-opened. The scoping
operator is what some people call a full stop, and others call a period or
a dot. For example, the name log.level refers to a variable called level

inside a scope called log. You do not have to explicitly open a scope to
define a variable or a nested scope within it. For example, line 7 opens the

2An alternative way to write string values is discussed in Appendix B.3 on page 173.

38 Chapter 5. Overview of Configuration Syntax

server.defaults scope without opening the outer server scope. Like-
wise, line 16 defines log.level without explicitly opening the log scope.

5.3 Copying Default Values

All keywords (for example, @include and @copyFrom) start with the @

symbol: this ensures there can never be a clash between the name of a
keyword and the name that you might wish to use for a configuration vari-
able or scope.

The @copyFrom statement (lines 15 and 19 in Figure 5.1) copies the en-
tire contents (name=value pairs and nested scopes) of the specified scope
into the current scope. This provides a simple, yet effective, reuse mech-
anism. It is not an error to assign a new value to an existing variable.
This makes it possible to override default values obtained via a @copyFrom

statement.

5.4 Including Other Files

An @include statement (not shown in Figure 5.1) includes the contents of
another configuration file into the current one. For example:

@include "/tmp/foo.cfg";

5.5 Accessing Environment Variables

You can access environmental information in a configuration file. For
example, you can use getenv("CANTHOLOGY_HOME") to access an environ-
ment variable called CANTHOLOGY_HOME.

install_dir = getenv("CANTHOLOGY_HOME");

Part III

Using Canthology to Generate
PDF Files

39

Introduction to Part III

The editor of an anthology needs to know more about Canthology than do
the contributors, although the burden of knowledge is still quite slight.
This part of the manual explains everything that an editor is likely to
need to do when using Canthology to produce PDF documents. Later,
in Part IV, I will explain some additional information you will need to
know if you want to use Canthology to create HTML documents.

40

Chapter 6

Installing Canthology

6.1 Prerequisites for Installing Canthology

You should ensure that LATEX and Java are on your computer before you
install Canthology. The combination of LATEX, Java and Canthology will
enable you to generate PDF documents.

If, in addition, you want to use Canthology to generate HTML docu-
ments, then you will also need to ensure that you are using a UNIX/Linux
computer and have HEVEA and Tcl installed. (Canthology does not support
the ability to generate HTML documents on Windows.)

LATEX distributions are available, free-of-charge, for many operating
systems, including Windows, Mac OS X and UNIX/Linux. Details of
these distributions can be found at www.latex-project.org/ftp.html.

Java is pre-installed on many computers. To check if you already have
Java on your computer (and, if so, which version of Java it is), open a
command/shell window and execute the following command:

java -version

You need Java 1.3 or later to run Canthology. If you do not have a recent-
enough version of Java on your computer, then you can download Java
from www.java.com.

HEVEA is included in some distributions of LATEX. You can determine
if HEVEA is installed on your computer by opening a shell window and

41

42 Chapter 6. Installing Canthology

executing the following command:

hevea non-existent-file

If you see an error message complaining that non-existent-file does
not exist, then HEVEA is installed. If HEVEA is not installed, then you can
download it from http://hevea.inria.fr.

To check if Tcl is installed on your computer, open a shell window and
execute the following command:

tclsh non-existent-file

If you see an error message complaining that non-existent-file does
not exist, then Tcl is installed. If Tcl is not installed, then you can down-
load it from www.tcl.tk/software/tcltk/platforms.html.

6.2 Installing Canthology

Canthology is available, free-of-charge, from www.canthology.org. You
can install Canthology with the following steps:

1. Unzip the Canthology distribution into a directory.

2. Set the CANTHOLOGY_HOME environment variable to the name of this
directory. For example:

CANTHOLOGY_HOME=$HOME/canthology (UNIX)
export CANTHOLOGY_HOME

set CANTHOLOGY_HOME=C:\canthology (Windows)

3. Add the bin subdirectory of the Canthology installation to your PATH
environment variable. For example:

PATH=$PATH:$CANTHOLOGY_HOME/bin (UNIX)
export PATH

set PATH=%PATH%;%CANTHOLOGY_HOME%\bin (Windows)

Chapter 7

A Tour of Canthology’s Features

7.1 Introduction

In this chapter, I provide a brief tour of Canthology’s features, so you can
see how Canthology makes it easy to create professional-looking books.
By the way, this is the longest chapter in the manual. Do not be put off
by that, because more than half the content of this chapter consists of full-
page diagrams that illustrate the output produced by Canthology.

7.2 The Starting-point Configuration File

The operation of Canthology is controlled by a configuration file that de-
fines approximately 20 variables. It would be rather tedious if you had to
assign suitable values for all of these variables before you could run Can-
thology. Thankfully, you don’t have to. This is because Canthology can
generate a starting-point configuration file that provides you with sensible
default values for most of the variables. This significantly reduces the time
required to start using Canthology.

The following command instructs Canthology to create a starting-point
configuration file called Canthology.cfg:

canthology -create Canthology.cfg

43

44 Chapter 7. A Tour of Canthology’s Features

The contents of this file are shown in Figure 7.1.

Figure 7.1: Starting-point configuration file
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:a4";

4 root_file {

5 preamble = preamble + [

6];

7 base_name = "my-anthology" + macro.paperSizeSuffix;

8 front_matter = [

9 "\input{titlepage-template-1.tex}",

10 macro.tableofcontents,

11];

12 main_matter = [

13];

14 back_matter = [

15];

16 }

17 substitutions.search_replace_pairs = [

18 # search string replace string

19 #---

20] + substitutions.search_replace_pairs;

21 }

7.2.1 Default Values and Paper Sizes

Line 1 in the starting-point configuration file includes another file that con-
tains many scopes,1 each of which provides sensible default values. (The
@copyFrom statement in line 3 copies default values from one of those
scopes.) The names of the scopes in the included configuration file can be
constructed from information in Table 7.1 on the next page by concatenat-
ing the name of a column with a colon and the name of a row. Doing that
yields scope names like book:letter, book:a5, report:a4, and so on.

Most of the columns (book, report, article, and so on) in Table 7.1
are names of popular LATEX document classes. The only exception is

1Recall from Section 5.2 on page 36 that a scope is a construct of the form "name { ... }".

7.2. The Starting-point Configuration File 45

Table 7.1: Scopes in etc/defaults.cfg with names of the form column:row

book report article memoir memoir-article

letter X X X X X
a4 X X X X X
a5 X X X X X
a5-trimmed X X X X X
html-one-page X X X
html-many-pages X X X

memoir-article, which uses the memoir class, but adds some customi-
sation to make that class suitable for writing articles.2

Most of the row names denote paper sizes: US Letter (letter) paper is
commonly used in America, while A4 (a4) is commonly used in Europe
and some other parts of the world.

A5 (a5) paper, which is half the size of A4 paper, is slightly larger than
the size of a paperback novel. When writing a document that I expect
will be read mostly on a computer screen rather than on paper, I format
it for A5 paper because: (1) the small size makes it easy to read text on
a computer screen without having to squint; and (2) two A5 pages can be
printed size-by-side on a sheet of A4 paper, thus saving on paper.

The a5-trimmed row is similar to a5 except that most of the margins
have been trimmed off. The intended use is to format documents for read-
ing on a tablet computer (such as the Apple iPad or an Android device).
Trimming unnecessary margins means the text of the document can be
scaled up about 10% on the screen, thus making it easier to read.

The first four rows in Table 7.1 instruct Canthology to create a PDF
document for the specified paper size.

The last two rows (html-one-page and html-many-pages) instruct
Canthology to create a HTML document, either as a monolithic HTML
page or as a collection of HTML pages. I will discuss the generation
of HTML documents in Part IV. Unfortunately, the HEVEA tool used to
convert LATEX documents into HTML does not support use of the memoir

document class.
2The memoir-article scope adds the following two statements to the preamble of a document:

\counterwithout{section}{chapter} \pagestyle{plain}

46 Chapter 7. A Tour of Canthology’s Features

7.2.2 Output Directory and File Name

Each of the scopes in the etc/defaults.cfg configuration file defines
variables, including working_dir and macro.paperSizeSuffix. Table 7.2
shows the values assigned to these variables in the various scopes. For
example, configuration scopes containing "a4" in their name (book:a4,
report:a4, and so on) assign the value "output-pdf-a4" to working_dir

and the value "-a4" to macro.paperSizeSuffix.

Table 7.2: Working directories and paper sizes for configuration scopes

working_dir macro.paperSizeSuffix

letter "output-pdf-letter" "-letter"

a4 "output-pdf-a4" "-a4"

a5 "output-pdf-a5" "-a5"

a5-trimmed "output-pdf-a5-trimmed" "-a5-trimmed"

html-one-page "output-html" ""

html-many-pages "output-html" ""

The working_dir directory specifies the directory into which Canthol-
ogy will create and copy files. The macro.paperSizeSuffix variable can
be used to incorporate the paper size of a document into its file name.

Let’s resume our examination of the starting-point configuration file
in Figure 7.1 on page 44. As I previously stated, line 1 includes another
configuration file that provides 26 scopes, each of which contains sensible
default values.

Line 2 opens a configuration scope called anthology1 (the name of
this scope is not important, so you can change it if you wish), and line 3
copies default values from the book:a4 scope into it.

As you can see in Table 7.2, the book:a4 scope assigns the value
"output-pdf-a4" to the working_dir variable. Thus, the PDF file created
by Canthology will be placed in a subdirectory called output-pdf-a4.
Within that subdirectory, the name of the PDF file created by Canthology
is obtained by appending ".pdf" to the value of the root_file.base_name
variable, which is defined on line 7 of Figure 7.1. Thus, the generated PDF
file will be output-pdf-a4/my-anthology-a4.pdf.

7.3. Running Canthology 47

If you run Canthology several times on the configuration file, each time
changing the name of the scope in line 3, then you will end up with the
same document formatted for different sizes of paper. This can be useful if
you intend to make the document available as a download from a website:
Europeans will choose the A4-formatted version of the document, while
Americans will prefer the US Letter formatted version.

7.2.3 Front, Main and Back Matter

As I explained in Section 4.3 on page 28, LATEX considers the contents of a
book (technically, this means use of the book or memoir document classes)
to be grouped into “front matter, “main matter” and “back matter”. The
front_matter (lines 8–12), main_matter (lines 13–14) and back_matter

(lines 15–16) variables are lists that specify text or commands to be added
to those parts of the document. Most of the commands are likely to be
\input commands to add contributions into the anthology.

The string on line 9 instructs Canthology to \input the file titlepage-
template-1.tex at the start of the book. You do not need to create this
file, because it is provided in the Canthology distribution. (Later, in Sec-
tion 8.3.2 on page 72, I will explain how Canthology searches for this
file.) Line 10 makes use of the macro.tableofcontents variable (which
is defined in the book:a4 scope from which default values were copied).
The value of that variable causes a table of contents to be added to the
anthology.

7.3 Running Canthology

To get Canthology to process the contents of its configuration file, you run
the command:

canthology -f Canthology.cfg

The "-f" command-line option is used to specify the name of the config-
uration file. If you do not specify this option, then Canthology defaults
to using the file Canthology.cfg. So, if your configuration file is called

48 Chapter 7. A Tour of Canthology’s Features

Canthology.cfg, then you can tell Canthology to process it by running
the (shorter) command:

canthology

When you run Canthology on the starting-point configuration file shown
in Figure 7.1, the PDF file produced contains a title page and a table of
contents (which is empty because you have not yet added any chapters or
sections into the anthology). The title page of the document is shown in
Figure 7.2 on the next page.

7.4 Text Substitutions on the Title Page

As you can see, the title page in Figure 7.2 contains five pieces of place-
holder text. Obviously, you would like to replace those with text spe-
cific to the anthology you are producing. You can do this by editing the
substitutions.search_replace_pairs variable in the configuration file,
as shown in Figure 7.3 on page 50.

Syntactically, the substitutions.search_replace_pairs variable is
a list of strings. However, the strings are arranged to form a two-column
table. Each row of the table specifies a mapping from placeholder text to
the desired text. There are two points worth noting about this table:

• If you do not want some placeholder text, then you can specify "" as
its replacement text. This is done for "(SUBTITLE-PLACEHOLDER)".

• The syntax of the configuration file permits you to break up a long
string into two or more shorter strings and use the + operator to con-
catenate them.

Canthology performs substitutions in files whose names match the pat-
tern form "*.tex"; in such patterns, * denotes zero or more characters.
(Later, in Section 8.3.3 on page 75, I will explain how to change this de-
fault behaviour.)

Having updated the substitutions.search_replace_pairs variable,
you can rerun canthology. The updated version of the generated title page
is shown in Figure 7.4 on page 51.

7.4. Text Substitutions on the Title Page 49

Figure 7.2: Formatting of titlepage-template-1.tex with placeholder text

(TITLE-PLACEHOLDER)

(SUBTITLE-PLACEHOLDER)

(AUTHOR-PLACEHOLDER)

(DESCRIPTION-PLACEHOLDER)

(PUBLISHER-PLACEHOLDER)

50 Chapter 7. A Tour of Canthology’s Features

Figure 7.3: Configuring substitutions
substitutions.search_replace_pairs = [

search string replace string

#---

"(TITLE-PLACEHOLDER)", "18th Century Poetry",

"(SUBTITLE-PLACEHOLDER)", "",

"(AUTHOR-PLACEHOLDER)", "John Smith",

"(DESCRIPTION-PLACEHOLDER)", "Poems for the \emph{Poetry 201} "

+ "course, 2011--2012",

"(PUBLISHER-PLACEHOLDER)", "Department of English, "

+ "ACME University",

] + substitutions.search_replace_pairs;

If you dislike the layout provided by titlepage-template-1.tex, then
you can modify the configuration file to use titlepage-template-2.tex

or titlepage-template-3.tex instead. The results of such modifications
are shown in Figures 7.5 and 7.6.

If none of those title page layouts suits your needs, then you have a few
more choices:

• Section 9.6 on page 87 will explain how you can add colour or an
image (such as a digital photograph) to the background of the title
page. Perhaps doing that will be sufficient to give you a pleasing
result.

• If you learn some LATEX markup commands, then you can design your
own title page instead of using one of the provided templates. (Later,
in Section 9.2 on page 83, I will recommend some useful books for
learning more about LATEX.)

• You might prefer to design a title page using a drawing editor. If so,
you can save the drawing as, say, a JPG, PNG or PDF file, and then
import that into LATEX to use as your title page.

For the moment, let’s assume that the layout of the title page is good
enough for your needs, so we can move on to the main content of the
book.

7.4. Text Substitutions on the Title Page 51

Figure 7.4: Formatting of titlepage-template-1.tex with substitutions

18th Century Poetry

John Smith

Poems for the Poetry 201 course, 2011–2012

Department of English, ACME University

52 Chapter 7. A Tour of Canthology’s Features

Figure 7.5: Formatting of titlepage-template-2.tex with substitutions

18th Century Poetry

John Smith

Poems for the Poetry 201 course, 2011–2012

Department of English, ACME University

7.4. Text Substitutions on the Title Page 53

Figure 7.6: Formatting of titlepage-template-3.tex with substitutions

John Smith

Poems for the Poetry 201 course, 2011–2012

18th Century Poetry

Department of English, ACME University

54 Chapter 7. A Tour of Canthology’s Features

7.5 Adding Content

Let’s assume you have contributions in files whose names reflect the title
of the contribution. For example, the file what-i-did-last-summer.tex

might look like the following:

\chapter{What I Did Last Summer}

\chapterAuthorInfo{John Smith}{England}

... Text of the story omitted for brevity.

You can add those contributions to your anthology in a few simple steps.

1. Copy the files into the same directory as Canthology.cfg so that
Canthology can find them. (Later, in Section 8.3.2 on page 72, I will
explain how you can configure Canthology to find files located in
other directories.)

2. Modify the main_matter variable in Canthology.cfg (Figure 7.1 on
page 44) to have an \input command for each contribution.

3. If your anthology has a large number of chapters, then you might
want to group several chapters together to form a larger unit called a
part. You can do this by adding a command of the form \part{name}

to the main_matter variable, where name is the name of the part.

Figure 7.7 on the next page shows an example configuration file that has
been modified according to steps 2 and 3 in the above list; for your conve-
nience, the \input and \part commands are shown in a bold font.

The indentation of \input commands after each \part command is not
required. It simply provides a way to indicate the high-level structure of
the anthology.

If you run Canthology on this configuration file, it will create a PDF
file that contains a title page, table of contents, and eight chapters, most of
which are grouped into parts. The generated table of contents is shown in
Figure 7.8 on page 56. Notice that use of \chapterAuthorInfo commands
results in the name of each chapter’s author being listed in the table of
contents.

7.5. Adding Content 55

Figure 7.7: Configuration file with some content
@include getenv("CANTHOLOGY_HOME") + "/etc/canthology-defaults.cfg";

anthology1 {

@copyFrom "book:a4";

root_file {

base_name = "wasting-time" + macro.paperSizeSuffix;

front_matter = [

"\input{titlepage-template-1.tex}",

macro.tableofcontents,

];

main_matter = [

"\input{introduction.tex}",

"\part{Wasting Time in Education}",

"\input{kindergarten.tex}",

"\input{school.tex}",

"\input{college.tex}",

"\part{The Passing of the Seasons}",

"\input{what-i-did-last-spring.tex}",

"\input{what-i-did-last-summer.tex}",

"\input{what-i-did-last-autumn.tex}",

"\input{what-i-did-last-winter.tex}",

];

back_matter = [

];

}

substitutions.search_replace_pairs = [

search string replace string

#---

"(TITLE-PLACEHOLDER)", "Wasting Time",

"(SUBTITLE-PLACEHOLDER)", "",

"(AUTHOR-PLACEHOLDER)", "Jane Doe",

"(DESCRIPTION-PLACEHOLDER)", "",

"(PUBLISHER-PLACEHOLDER)", "",

];

}

Each \part command results in the name of the part being listed in
the table of contents. Each part is automatically numbered using Roman
numerals (I, II, III, IV, and so on). In addition, the main body of the book
will contain a page displaying a part’s number and name. An example of
this is shown in Figure 7.9 on page 57.

56 Chapter 7. A Tour of Canthology’s Features

Figure 7.8: Table of contents

Contents

1 Introduction 1

I Wasting Time in Education 3

2 Screaming and Crying in Kindergarten 5
Peter Welch

3 Bored Senseless in School 7
Mary King

4 Partying in College 9
Karl Plauger

II The Passing of the Seasons 11

5 What I Did Last Spring 13
Samantha Peach

6 What I Did Last Summer 15
John Smith

7 What I Did Last Autumn 17
Adam Jones

8 What I Did Last Winter 19
Walter Barry

iii

7.5. Adding Content 57

Figure 7.9: A “part” page

Part II

The Passing of the Seasons

11

58 Chapter 7. A Tour of Canthology’s Features

Figure 7.10 on the next page shows the starting page of a chapter. No-
tice that the use of a \chapterAuthorInfo command results in the name
and personal details (such as age, location, or occupation) of the author
appearing at the top of the page.

7.6 Front and Back Matter

You might want to put some additional material at the very start or very
end of your anthology. For example, some books have a preface or forward
at the start of the book, and some books have appendices or a glossary at
the back.

When writing a preface, foreword, appendix or glossary, you should
write it in the same way that you write a chapter, that is, you start it with a
\chapter command. For example:

\chapter{Preface}

... Text of the preface omitted for brevity.

Figure 7.11 on page 60 illustrates how to add a preface, some appendices
and a glossary to your Canthology configuration file.

As you can see by focusing on the bold text, you add a preface or
foreword to the front_matter variable in the configuration file, and add
the glossary to the back_matter variable. Appendices are handled slightly
differently: they go at the end of the main_matter and are preceded by
macro.startAppendices.

If you now look at the generated table of contents in Figure 7.12 on
page 61, you will see that the preface and glossary are listed as unnum-
bered chapters. In general, chapters and sections in the front_matter

and back_matter are unnumbered, while chapters and sections in the
main_matter are numbered.

You can verify the unnumbered nature of a front-matter chapter by
looking at the preface shown in Figure 7.13 on page 62.

Appendices are placed in the main_matter so they can be numbered,
but they are “numbered” with letters (A, B, C, and so on) rather than digits
to distinguish them from chapters. The use of macro.startAppendices

7.6. Front and Back Matter 59

Figure 7.10: Start of a chapter

John Smith
England

Chapter 6

What I Did Last Summer

. . . Text of the story omitted for brevity.

15

60 Chapter 7. A Tour of Canthology’s Features

Figure 7.11: Adding front and back matter to the configuration file
@include getenv("CANTHOLOGY_HOME") + "/etc/canthology-defaults.cfg";

anthology1 {

@copyFrom "book:a4";

root_file {

base_name = "wasting-time" + macro.paperSizeSuffix;

front_matter = [

"\input{titlepage-template-1.tex}",

macro.tableofcontents,

"\input{preface.tex}",

];

main_matter = [

"\input{introduction.tex}",

"\part{Wasting Time in Education}",

"\input{kindergarten.tex}",

"\input{school.tex}",

"\input{college.tex}",

"\part{The Passing of the Seasons}",

"\input{what-i-did-last-spring.tex}",

"\input{what-i-did-last-summer.tex}",

"\input{what-i-did-last-autumn.tex}",

"\input{what-i-did-last-winter.tex}",

macro.startAppendices,

"\input{statistical-tables.tex}",

"\input{relevant-laws.tex}",

];

back_matter = [

"\input{glossary.tex}",

];

}

substitutions.search_replace_pairs = [

search string replace string

#---

"(TITLE-PLACEHOLDER)", "Wasting Time",

"(SUBTITLE-PLACEHOLDER)", "",

"(AUTHOR-PLACEHOLDER)", "Jane Doe",

"(DESCRIPTION-PLACEHOLDER)", "",

"(PUBLISHER-PLACEHOLDER)", "",

];

}

7.6. Front and Back Matter 61

Figure 7.12: Table of contents with front and back matter

Contents

Preface v

1 Introduction 1

I Wasting Time in Education 3

2 Screaming and Crying in Kindergarten 5
Peter Welch

3 Bored Senseless in School 7
Mary King

4 Partying in College 9
Karl Plauger

II The Passing of the Seasons 11

5 What I Did Last Spring 13
Samantha Peach

6 What I Did Last Summer 15
John Smith

7 What I Did Last Autumn 17
Adam Jones

8 What I Did Last Winter 19
Walter Barry

iii

62 Chapter 7. A Tour of Canthology’s Features

Figure 7.13: Front and back matter is unnumbered

Preface

. . . Text of the preface omitted for brevity.

v

7.7. Summary 63

triggers this switch in the numbering convention and also causes a page
to be generated that signals the start of the appendices (Figure 7.14 on the
next page).

Figure 7.15 on page 65 shows the formatting of an appendix.

7.7 Summary

This chapter has provided a rapid and somewhat superficial tour of Can-
thology’s features. Canthology and LATEX take care of tedious tasks in
typesetting a book, such as the layout of a title page, creating a table
of contents, correct numbering of chapters and appendices, and ensuring
chapters are unnumbered in the front and back matter. This frees you to
focus on the contents and structure of the book.

The next chapter takes a deeper look at Canthology, so you can learn
how to fine-tune its behaviour.

64 Chapter 7. A Tour of Canthology’s Features

Figure 7.14: The appendices page

Appendices

21

7.7. Summary 65

Figure 7.15: Start of an appendix

Appendix A

Statistical Tables

. . . Text omitted for brevity.

23

Chapter 8

How Canthology Operates

8.1 Introduction

Chapter 7 used a demonstration-driven approach to illustrate (a subset of)
what Canthology can do. This chapter explains how Canthology does
those things.

8.2 Configuration File and Scopes

Consider the following command:

canthology -f my-file.cfg -scope doc-1 -scope doc-2

The -f option instructs Canthology to use my-file.cfg as its configu-
ration file. If you omit this option, then Canthology defaults to using
Canthology.cfg as its configuration file.

The -scope option instructs Canthology to generate a document from
the configuration variables in the specified scope. You can specify the
-scope option multiple times; this causes Canthology to generate docu-
ments for each of the specified scopes. If you do not specify any scopes,
then Canthology generates documents from all the top-level scopes that
contain a variable called root_file.base_name.

66

8.3. Configuration Variables 67

8.3 Configuration Variables

Figure 8.1 shows the starting-point configuration file you can obtain by
running the command:

canthology -create Canthology.cfg

Figure 8.1: Starting-point configuration file

@include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

anthology1 {

@copyFrom "book:a4";

root_file {

base_name = "my-anthology" + macro.paperSizeSuffix;

preamble = [

] + preamble;

front_matter = [

"\input{titlepage-template-1.tex}",

macro.tableofcontents,

];

main_matter = [

];

back_matter = [

];

}

substitutions.search_replace_pairs = [

search string replace string

#---

] + substitutions.search_replace_pairs;

}

The starting-point configuration file is short because the @copyFrom

statement copies a lot of configuration variables from a scope defined in
the @include-d file. Figure 8.2 shows a configuration file that explicitly
sets all configuration variables used by Canthology, although not all the
values shown for those variables are the actual default values. Instead, the
variables’ values have been chosen to facilitate the discussion that follows.

At a high level, Canthology operates as follows:

1. Canthology creates a “working directory” in which it will create
some LATEX files. In particular, Canthology uses information in its

68 Chapter 8. How Canthology Operates

Figure 8.2: Configuration variables
anthology1 {

working_dir = "output-pdf-a4";

root_file {

base_name = "my-anthology-a4";

macro {

tableofcontents = "\clearforchapter %n"

+ "\tableofcontents*";

appendix = "\clearforchapter %n"

+ "\appendix %n"

+ "\phantomsection %n"

+ "\appendixpage";

}

documentclass {

name = "book";

options = ["12pt", "twoside"];

}

package {

names = ["appendix", "canthology", "geometry"];

geometry.options = ["paper=a4paper"];

}

preamble = [

"\setcounter{tocdepth}{4}",

];

front_matter = [

"\input{titlepage.tex}",

macro.tableofcontents,

];

main_matter = [

"\input{chapter-1.tex}",

"\input{chapter-2.tex}",

macro.appendix,

"\input{appendix-a.tex}",

"\input{appendix-b.tex}",

];

back_matter = [

"\input{glossary.tex}"

];

}

... continued on the next page

8.3. Configuration Variables 69

Figure 8.2 (continued): Configuration variables
... continued from the previous page

copy {

commands = ["\input", "\usepackage", "\includegraphics"];

file_extensions = [".tex", ".sty", ".png", ".jpg"];

search_path = [

".",

getenv("CANTHOLOGY_HOME") + "/etc/latex"

];

extra_files_to_copy = [];

look_for_copy_commands {

in_matching_files = ["*.tex", "*.sty"];

not_in_matching_files = [];

}

}

substitutions {

in_matching_files = ["*.tex"];

not_in_matching_files = [];

search_replace_pairs = [

"(AUTHOR-PLACEHOLDER)", "Jane Doe",

"(TITLE-PLACEHOLDER)", "Modern Fairy Tales",

];

}

build_commands = [

"pdflatex -interaction=errorstopmode (ROOT_FILE_BASE_NAME).tex",

"pdflatex -interaction=errorstopmode (ROOT_FILE_BASE_NAME).tex"

];

}

configuration file to build a root ".tex" file in the working directory.
This root file will contain \input commands to add the contributions
of the anthology.

2. Canthology copies required support files into the working directory.
These support files include all the contributions, graphic files (if any)
and some package (".sty") files.

3. Canthology runs some LATEX-related commands (such as latex or
pdflatex) on the root ".tex" file to produce the ready-to-print an-
thology.

Those steps are discussed in the following subsections.

70 Chapter 8. How Canthology Operates

8.3.1 Creating the Root ".tex" File

The working_dir configuration variable specifies the name of the work-
ing directory that Canthology should create. By convention, the value of
this variable starts with "output-" and the remainder of the value indi-
cates how the document is formatted. For example, the value might be
"output-pdf-a4" if you are creating an A4-formatted PDF version of the
anthology. This convention makes it easy to create multiple versions of
the documents, each one formatted for a different paper size.

The root_file scope contains variables that are used to create a root
".tex" file inside the working directory. The remaining discussion in this
subsection is for variables within the root_file scope.

The base_name configuration variable specifies the “base” file name
(that is, the file name without any extension) for the root ".tex" file. For
example, if base_name has the value "my-anthology-a4", then the root
file name is my-anthology-a4.tex.

The configuration variables within the documentclass sub-scope are
used to create the \documentclass command at the start of the root ".tex"
file. For example, consider the following documentclass scope:

documentclass {

name = "book";

options = ["12pt", "twoside"];

}

Those settings result in the following being generated:

\documentclass[12pt, twoside]{book}

The configuration variables within the package sub-scope are used to
generate \usepackage commands. For example, consider the following
package scope:

package {

names = ["appendix", "canthology", "geometry"];

geometry.options = ["paper=a4paper"];

}

8.3. Configuration Variables 71

The names variable specifies that three packages are being used: appendix
[15], canthology and geometry [12]. For each of these specified pack-
ages, you can optionally specify a list of package options. The above
example shows a list of options being specified for the geometry package,
but no options for the appendix or canthology packages. Those configu-
ration settings result in the following being generated:

\usepackage{appendix}

\usepackage{canthology}

\usepackage[paper=a4paper]{geometry}

The value of the preamble variable is written to the root ".tex" file
immediately after the \usepackage commands.

Canthology ignores everything in the macro sub-scope. The intention
is that you can use this sub-scope to define variables whose values are a
sequence of LATEX commands. Then, you can use those variables (as a
form of shorthand) in preamble or (more commonly) the front_matter,
main_matter or back_matter variables. Figure 8.2 uses a bold font to
illustrate this.

Having written the value of the preamble variable to the ".tex" file,
Canthology then writes "\begin{document}" and "\frontmatter" to the
file and follows it with all the strings contained in the front_matter con-
figuration variable. For example, the configuration shown in Figure 8.2
would result in the following being generated:

\begin{document}

\frontmatter

\input{titlepage.tex}

\clearforchapter

\tableofcontents

Then "\mainmatter" and all the strings in the main_matter configuration
variable are written to the ".tex" file. After that, "\backmatter" and all
the strings in the back_matter configuration variable are written to the
".tex" file.

Canthology finishes the ".tex" file by writing "\end{document}" to
it. Figure 8.3 shows the complete ".tex" file that is generated.

72 Chapter 8. How Canthology Operates

Figure 8.3: The generated my-anthology-a4.tex file
\documentclass[12pt,twoside]{memoir}

\usepackage{canthology}

\usepackage[paper=a4paper]{geometry}

\setcounter{tocdepth}{4}

\begin{document}

\frontmatter

\input{titlepage.tex}

\clearforchapter

\tableofcontents

\mainmatter

\input{chapter-1.tex}

\input{chapter-2.tex}

\clearforchapter

\appendix

\phantomsection

\appendixpage

\input{appendix-a.tex}

\input{appendix-b.tex}

\backmatter

\input{glossary.tex}

\end{document}

8.3.2 Copying Support Files

It is not enough for Canthology to create just the root ".tex" file in the
working directory. Canthology must copy some other files into the work-
ing directory too. Here are some examples of other files that may need to
be copied:

• Any ".tex" files that are \input-ed by the root file. (And if those
\input-ed files themselves contain \input statements, then Canthol-
ogy must recursively follow the chain of \input commands.)

• Any graphic files, such as diagrams or digital photographs, that are
used in an \includegraphics command inside a ".tex" file.

8.3. Configuration Variables 73

• BIBTEX-based bibliographies, if any, that are used by the document.

LATEX is flexible enough that it is impossible for Canthology to accurately
predict the entire set of files that must be copied into the working directory.
For this reason, Canthology does not have a hard-coded set of rules for de-
ciding which files need to be copied. Instead, the copying of files is driven
by configuration variables in the copy scope, as shown in Figure 8.2.

The copy.commands variable specifies a list of LATEX commands whose
first parameter between braces (that is, between { and }) specifies a file to
be copied. For example, consider the following setting of this variable:

commands= ["\input", "\usepackage", "\includegraphics"];

If Canthology finds the statement \input{chapter-1.tex} in a file, then
it will copy the chapter-1.tex file to the working directory (and recur-
sively search the copied file for other files to be copied). Now let’s assume
Canthology finds the following statement:

\includegraphics[scale=0.7]{my-photograph}

Canthology ignores optional parameters (enclosed between [and]) and
instead looks at the first parameter enclosed in braces: my-photograph.
This parameter to the \includegraphics command is a file name that
may or may not contain a file-name extension (such as ".jpg" or ".png").
The copy.file_extensions configuration variable enables Canthology to
cater for both possibilities:

file_extensions = [".tex", ".pdf", ".png", ".jpg"];

When Canthology encounters the name of a file (such as chapter-1.tex

or my-photograph) to be copied, Canthology first tries to copy the file
whose name is specified. If that fails, then Canthology suffixes the file
name with each of the extensions specified in copy_file_extensions and
tries to copy the resulting file.

The approach discussed above works if the file to be copied is specified
as the first non-optional parameter to a command. But what if the file
is specified in, say, the second or third parameter to a command? As a
hypothetical example:

74 Chapter 8. How Canthology Operates

\exampleCommand{11}{42}{another-photograph}

Or perhaps the file to be copied is a non-LATEX file required to control
the build process. An example of this might be a Makefile or an Ant
build.xml file. You should list such files in the copy.extra_files_to_

copy configuration variable. For example:

extra_files_to_copy= ["another-photograph", "Makefile"];

However, it is unlikely you will need to do that frequently. This is because
the copy.commands variable will be sufficient most of the time.

When Canthology is looking for a file that it must copy, it looks for that
file in the list of directories specified in the search_path configuration
variable:

search_path = [

".",

getenv("CANTHOLOGY_HOME") + "/etc/latex"

];

The first entry in the list instructs Canthology to look in the current direc-
tory. The second directory instructs Canthology to look in the etc/latex

subdirectory of the Canthology installation. Among other things, that di-
rectory contains the template title pages that I discussed in Section 7.4 on
page 48.

If Canthology is unable to copy a file because the file is not in any
of the directories listed in copy.search_path, then Canthology does not
consider this to be an error. Instead, Canthology assumes that the “miss-
ing” file is bundled with a LATEX distribution, so LATEX will be able to find
it. This is commonly the case with package (".sty") files.

If you are editing an anthology that contains, say, 50 contributions,
then you might find it awkward to store all the contributions in a single
directory. You might prefer to spread the contributions over several direc-
tories, so that each directory contains a subset of the ".tex" files. (You
might have one directory for poems, another for short stories, and so on.)
You can do this by listing each of those directories in the search_path

configuration variable. For example:

8.3. Configuration Variables 75

search_path = [

"poems", "short-stories, "plays",

getenv("CANTHOLOGY_HOME") + "/etc/latex"

];

When Canthology is copying a file, it needs to decide whether it should
search inside the file for nested copy commands. Canthology uses the
configuration variables in the look_for_copy_commands scope to make
this decision:

look_for_copy_commands {

in_matching_files = ["*.tex", "*.sty"];

not_in_matching_files = [];

}

Canthology will search inside a copied file for nested copy commands if:
(1) the file name matches at least one pattern in in_matching_files, and
(2) does not match any patterns in not_in_matching_files. In a pattern,
* acts as a wildcard that can match zero or more characters. For exam-
ple, "*.tex" matches file names that end in ".tex". These configuration
variables provide a simple, yet effective, way to instruct Canthology to
look for nested copy commands in ".tex" and ".sty" files but not in, say,
".jpg" or ".png" files.

8.3.3 Performing Text Substitutions

Variables in the nested substitutions scope control how Canthology per-
forms search-and-replace on files. For example:

substitutions {

in_matching_files = ["*.tex"];

not_in_matching_files = [];

search_replace_pairs = [

"(AUTHOR-PLACEHOLDER)", "Jane Doe",

"(TITLE-PLACEHOLDER)", "Modern Fairy Tales",

];

}

76 Chapter 8. How Canthology Operates

Canthology performs substitutions on a copied file if: (1) the file name
matches at least one pattern in in_matching_files, and (2) does not
match any patterns in not_in_matching_files.

The search_replace_pairs variable is used to specify pairs of search
and replace strings. Canthology automatically extends search_replace_
pairs so that occurrences of "(ROOT_FILE_BASE_NAME)" are replaced with
the value of the root_file.base_name configuration variable.

8.3.4 Running LATEX-related commands

After Canthology has generated the root ".tex" file and copied supporting
files to the working directory, the only task remaining for Canthology is
to run one or more LATEX-related commands to turn the files into a nicely
formatted document in, for example, PDF format. To do this, Canthology
executes each command specified by the build_commands configuration
variable. For example:

build_commands = [

"pdflatex -interaction=errorstopmode "

+ "(ROOT_FILE_BASE_NAME).tex",

"pdflatex -interaction=errorstopmode "

+ "(ROOT_FILE_BASE_NAME).tex"

];

Because of the way LATEX works, some commands (such as latex or
pdflatex) have to be run twice to correctly resolve cross references and to
produce a table of contents. This is why the above example runs pdflatex
twice.

Canthology uses substitutions.search_replace_pairs to perform
substitutions on each command that is about to be executed. By doing this,
the "(ROOT_FILE_BASE_NAME)" text within a command will be replaced
with the value of the root_file.base_name configuration variable.

If latex or pdflatex encounters an error in an input file, then, by de-
fault, it goes into an interactive mode to ask the user what it should do. The
"-interaction=errorstopmode" option instructs latex and pdflatex to

8.4. The etc/defaults.cfg File 77

not go into an interactive mode if an error occurs, and instead just print an
error message and exit.

8.4 The etc/defaults.cfg File

The first line in a starting-point configuration file is:

@include getenv("CANTHOLOGY_HOME")+ "/etc/defaults.cfg";

An outline of the included etc/defaults.cfg file is shown in Figure 8.4.
The file contains many scopes; these enable it to provide default val-
ues suitable for many combinations of document classes (book, report,
article and memoir) and paper sizes.

The etc/defaults.cfg file serves several important purposes.
First, Canthology makes use of over twenty configuration variables.

The defaults.cfg file provides sensible default values for most of those
variables. This greatly simplifies Canthology for new users.

Second, some people like to write LATEX-based documents with, say,
the book class, while other people prefer to use the newer and more flex-
ible memoir class. Although the memoir class is mostly backwards com-
patible with the book class, there are a few incompatibilities, which often
manifest themselves as slightly differing contents of the root ".tex" file.
For example:

• A book-based document might need more \usepackage commands
than a memoir-based document, because the memoir class has the
functionality of many popular packages built into it.

• In a memoir-based document, the sequence of commands used to
achieve a particular result—such as guarantee the table of contents
appears on a right-hand page, or ensure that the table of contents lists
the start of the appendices—is sometimes different to the required se-
quence of commands in a book-based document.

The etc/defaults.cfg file can encapsulate users from these subtle dif-
ferences between book- and memoir-based documents. This is because

78 Chapter 8. How Canthology Operates

Figure 8.4: Outline of the etc/defaults.cfg file
default.common { ... } # details omitted for brevity

default.html {

@copyFrom "default.common";

... # details omitted for brevity

}

default.a4-geometry-options { root_file.package.geometry.options = [...]; }

default.a5-geometry-options { ... }

default.a5-trimmed-geometry-options { ... }

default.letter-geometry-options { ... }

book:a4 {

@copyFrom "default.common";

@copyFrom "default.a4-geometry-options";

working_dir = "output-pdf-a4";

root_file {

documentclass.name = "book";

macro { ... } # details omitted for brevity

package.names = [...];

}

}

book:a5 {

@copyFrom "book:a4";

@copyFrom "default.a5-geometry-options";

working_dir = "output-pdf-a5";

macro.paperSizeSuffix = "-a5";

root_file.documentclass.options = ["10pt", "twoside"];

}

book:a5-trimmed {

@copyFrom "book:a4";

@copyFrom "default.a5-trimmed-geometry-options";

working_dir = "output-pdf-a5-trimmed";

macro.paperSizeSuffix = "-a5-trimmed";

root_file.documentclass.options = ["10pt", "twoside"];

}

book:letter {

@copyFrom "book:a4";

@copyFrom "default.letter-geometry-options";

}

... continued on the next page

8.4. The etc/defaults.cfg File 79

Figure 8.4 (continued): Outline of the etc/defaults.cfg file
... continued from the previous page

book:html-one-page {

@copyFrom "default.html";

working_dir = "output-html";

... # details omitted for brevity

}

book:html-many-pages {

@copyFrom "default.html";

... # details omitted for brevity

}

report:a4 { ... }

report:a5 { ... }

report:a5-trimmed { ... }

report:letter { ... }

report:html-one-page { ... }

report:html-many-pages { ... }

article:a4 { ... }

article:a5 { ... }

article:a5-trimmed { ... }

article:letter { ... }

article:html-one-page { ... }

article:html-many-pages { ... }

memoir:a4 { ... }

memoir:a5 { ... }

memoir:a5-trimmed { ... }

memoir:letter { ... }

memoir:html-one-page { ... }

memoir:html-many-pages { ... }

memoir-article:a4 { ... }

memoir-article:a5 { ... }

memoir-article:a5-trimmed { ... }

memoir-article:letter { ... }

memoir-article:html-one-page { ... }

memoir-article:html-many-pages { ... }

the memoir-related scopes specify the packages required by memoir and
also define macro.tableofcontents and macro.startAppendices in a
memoir-compatible way. Likewise, the book-related scopes specify book-

80 Chapter 8. How Canthology Operates

required packages and define the macro variables in a book-compatible
way.

Of course, many of the configuration settings for memoir are identical
to those required for book. This is why the etc/defaults.cfg file has a
default.common scope that defines variables with common values. The
memoir- and book-based scopes use the @copyFrom command to access
those variables.

Subtle differences are not limited to just use of the book or memoir

classes. Subtle difference in how to write a LATEX document also arise
when creating PDF or HTML documents. The etc/defaults.cfg file
does its best to encapsulate many of those output-format differences too.

The third and final purpose of the etc/defaults.cfg file is to make
it possible for people to extend Canthology without having to modify its
Java source code. For example:

• There are other document classes that some users might wish to use
to write a document.

• The etc/defaults.cfg file assumes users want to use pdflatex to
convert a LATEX document into a PDF file. Some users might prefer
to use, say, xelatex or latex and dvipdfmx to produce a PDF file.
Or perhaps a user will want to use latex and dvips to produce a
PostScript file.

• The etc/defaults.cfg uses HEVEA to generate HTML (this is dis-
cussed in Part IV). However, some people may prefer to use another
LATEX-to-HTML converter.

It should be possible to customise Canthology to support the above by
modifying etc/defaults.cfg.

8.5 Extending Configuration Variables

As discussed in Section 8.4, one purpose of etc/defaults.cfg is to en-
capsulate subtle differences in the use of particular document classes (such

8.5. Extending Configuration Variables 81

as book and memoir) or in creating documents for different output formats
(such as PDF and HTML).

One way this encapsulation occurs is by assigning suitable values to
the following variables:

root_file.package.names

root_file.preamble

substitutions.search_replace_pairs

Because of this, it is important to extend (rather than replace) the values
of these variables in the configuration scope for a document. For example,
the lines shown in bold in Figure 8.5 are likely to result in LATEX error
messages or badly-formatted output when you run canthology.

Figure 8.5: Some configuration variables should not be replaced
@include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

anthology1 {

@copyFrom "book:a4";

root_file {

base_name = "my-anthology" + macro.paperSizeSuffix;

package {

names = [...]; % bad

}

preamble = [...]; % bad

front_matter = [...];

main_matter = [...];

back_matter = [...];

}

substitutions {

search_replace_pairs = [...]; % bad

}

}

Instead, it is better to extend the values of those variables by using the
list concatenation operator (+) to merge a new value with the existing value
of a variable. This is illustrated in Figure 8.6 on the next page.

82 Chapter 8. How Canthology Operates

Figure 8.6: Some configuration variables should be extended
@include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

anthology1 {

@copyFrom "book:a4";

root_file {

base_name = "my-anthology" + macro.paperSizeSuffix;

package {

names = [...] + names; % good

}

preamble = [...] + preamble; % good

front_matter = [...];

main_matter = [...];

back_matter = [...];

}

substitutions {

search_replace_pairs = [...] + search_replace_pairs; % good

}

}

Chapter 9

Next Steps

9.1 Introduction

If you have read all the preceding chapters of this manual, then you should
have a good understanding of how to use Canthology. However, you may
be wondering, “So far I have learned how to do 95% of what I want to in
the anthology I am creating, but how do I learn to do the remaining 5%?”
The purpose of this chapter is to answer that question.

9.2 LATEX Documentation

Recall that Canthology is a simplification wrapper for LATEX. Because
of this, many questions of the form, “How can I do such-and-such with
Canthology?” are really questions about how to do such-and-such with
LATEX. To find the answers to such questions, you will probably need to
read more about LATEX.

Many LATEX books have been published. You can find a list of such
books by visiting an on-line bookshop (such as Amazon.co.uk), searching
for “latex typesetting”, and then reading customer reviews to narrow down
your search.

One book I recommend is LATEX: a Document Preparation System [5],
which provides a good introduction to LATEX. Alternatively, some good

83

84 Chapter 9. Next Steps

introductory guides to LATEX are available as free downloads [10] [4].
If an introductory book does not answer your questions about how to do

such-and-such, then perhaps the functionality you are seeking is provided
by one of the numerous add-on packages available for LATEX. You can
search for these on the Comprehensive TEX Archive Network, which is
usually referred to by its acronym: CTAN (www.ctan.org).

The LATEX Companion [8] discusses over 200 packages that are available
for LATEX. You may find it more convenient to borrow or buy a copy of
that book and scan through its contents to find a package that serves your
needs rather than search on CTAN.

The Memoir Class for Configurable Typesetting User Guide [14] doc-
uments the memoir class, which is a (mostly) backwards-compatible re-
placement for the book class. The memoir class contains the functionality
of several dozen popular packages built into it. So, if you use the memoir

class, you are less likely to have to search for additional packages to sat-
isfy your needs.

9.3 LATEX Errors

Sooner or later, you will encounter an error in a ".tex" file, and this will
cause LATEX to report an error message. It is outside the scope of this
manual to discuss the LATEX error-reporting mechanism. Instead, some
introductory books on LATEX discuss this topic in detail [5] [4].

9.4 Defining New Commands

LATEX provides numerous built-in commands. It also provides facilities
for you to define additional commands. Most books and tutorials on LATEX
discuss this topic in detail, so I will provide only a brief overview here.

Let’s assume you are writing a phrase book for French in which you
use a bold font for English words and phrases, and a bold italic font for
their French counterparts. Thus, to obtain the following output:

The French for the table is la table.

9.5. Implementing a Package 85

you might write:

The French for \textbf{the table} is

\textbf{\textit{la table}}.

You may consider those LATEX font-changing commands to be verbose,
especially if you will be using them many times in your book. For this
reason, you might want to define two commands, \en (for typesetting En-
glish text) and \fr (for typesetting French text), as follows:

\newcommand{\en}[1]{\textbf{#1}}

\newcommand{\fr}[1]{\textbf{\textit{#1}}}

You use the \newcommand command to define a new command. The first
argument to \newcommand is the name of the new command that is to be
defined. If the new command is to take arguments, then the number of
arguments is specified in square brackets; thus, [1] indicates that the new
command will take one argument. The final argument to \newcommand is
the body of the new command. Within this body, #1 is a placeholder for
the first argument, #2 is a placeholder for the second argument, and so on.
Having defined the above commands, you can use them as follows:

The French for \en{the table} is \fr{la table}.

Command definitions are usually placed in the preamble of a docu-
ment, as you can see in Figure 9.1 on the next page.

When using Canthology, you place your command definitions in the
preamble of your document by adding them to the root_file.preamble

variable.

9.5 Implementing a Package

If you need to define a large number of commands, then you may find
it inconvenient to define them all in the preamble of your document. An
alternative is to define them in as a package, which is simply a file (with
a ".sty" extension) that contains the definitions of commands. Actually,
the contents of a ".sty" file are supposed to follow a particular structure to

86 Chapter 9. Next Steps

Figure 9.1: Defining commands in the preamble of a document
\documentclass[12pt,twoside]{book}

\usepackage{color}

\usepackage[english]{babel}

\newcommand{\en}[1]{\textbf{#1}}

\newcommand{\fr}[1]{\textbf{\textit{#1}}}

\begin{document}

\frontmatter

... % omitted for brevity

\mainmatter

... % omitted for brevity

\backmatter

... % omitted for brevity

\end{document}

enable LATEX to manage them. Full details of this structure are discussed
in LATEX 2ε for class and package writers [11], but you can see a simple
example of a package in Figure 9.2.

Figure 9.2: The example.sty package file
\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{example}

\RequirePackage{color}

\newcommand{\en}[1]{\textbf{#1}}

\newcommand{\fr}[1]{\textbf{\textit{#1}}}

... % definition of other commands omitted for brevity

The \NeedsTeXFormat command specifies that the package is compati-
ble with the LATEX 2ε version of LATEX. The \ProvidesPackage command
specifies the name of the package. If the commands defined by the pack-
age rely upon other packages, then you should use \RequirePackage com-
mands to state those dependencies. After that, you can use \newcommand

to define commands.

When you have finished implementing a package, you can use it in
a document by adding a \usepackage command in the preamble of the
document. For example:

9.6. Background Graphics 87

\usepackage{example}

9.6 Background Graphics

The eso-pic package [9] defines commands that enable you to place items
on the background of a page. If you combine use of this package with the
color or graphicx packages [3], then you can fill the background of a
page—typically the title page—with a colour or a graphics file, such as a
digital photograph. Canthology provides a simplification wrapper around
the eso-pic package that makes it trivial to achieve such effects. The
commands provided by Canthology are as follows:

\thisPageBackgroundCommand{\command}

\thisPageBackgroundColor{name}

\thisPageBackgroundColor[mode]{specification}

\thisPageBackgroundImage[options]{fileName}

You can see an example of the \thisPageBackgroundCommand command
in Figure 9.3 on the next page.

Lines 6–13 append the preamble variable with the definition of a com-
mand called \rectangleBackground. The body of this command (lines 8–
11) uses the \AtPageLowerLeft command (defined by the eso-pic pack-
age [9]) to execute two commands—\color and \rule—at the lower-left
corner of the current page. The \color command (defined by the color

package [3]) sets the foreground colour to be a pale shade of blue. The
\rule command (documented in most LATEX books and tutorials) draws a
filled-in rectangle that extends one-third the width and the full height of
the page.

Having defined the \rectangleBackground command, the next step is
to execute it to set the background for the title page. You do this by passing
the command’s name as an argument to \thisPageBackgroundCommand

(line 15). Figure 9.4 on page 89 shows the resulting title page.
The \thisPageBackgroundColor command fills the background of the

entire page with the specified colour. For example, line 7 of Figure 9.5

88 Chapter 9. Next Steps

Figure 9.3: The \thisPageBackgroundCommand command
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:a4";

4 root_file {

5 base_name = "my-anthology" + macro.paperSizeSuffix;

6 preamble = preamble + [<%

7 \newcommand{\rectangleBackground}{%

8 \AtPageLowerLeft{%

9 \color[rgb]{0.8,0.8,1.0}%

10 \rule{.33\paperwidth}{\paperheight}%

11 }%

12 }

13 %>];

14 front_matter = [

15 "\thisPageBackgroundCommand{\rectangleBackground}",

16 "\input{titlepage-template-1.tex}",

17 macro.tableofcontents,

18];

19 main_matter = [...]; # omitted for brevity

20 back_matter = [...]; # omitted for brevity

21 }

22 substitutions.search_replace_pairs = [

23 ... # omitted for brevity

24] + substitutions.search_replace_pairs;

25 }

illustrates how you can set a background colour for the title page. The
result of doing so are shown in Figure 9.6 on page 91.

The argument to \thisPageBackgroundImage is the name of a file con-
taining an image, for example, a digital photograph in JPEG format. The
command scales the image to fit the height and width of the paper, and
uses the \includegraphics command [3] to place this scaled image in
the background. For example:

\thisPageBackgroundImage{front-cover}

If you specify optional arguments, then these will be passed as optional
arguments to the \includegraphics command. The following example
specifies that some of the image is to be trimmed off:

9.6. Background Graphics 89

Figure 9.4: Title page with a blue rule on left side

18th Century Poetry

John Smith

Poems for the Poetry 201 course, 2011–2012

Department of English, ACME University

90 Chapter 9. Next Steps

Figure 9.5: The \thisPageBackgroundColor command
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:a4";

4 root_file {

5 base_name = "my-anthology" + macro.paperSizeSuffix;

6 front_matter = [

7 "\thisPageBackgroundColor[rgb]{0.8,0.8,1.0}",

8 "\input{titlepage-template-1.tex}",

9 macro.tableofcontents,

10];

11 main_matter = [...]; # omitted for brevity

12 back_matter = [...]; # omitted for brevity

13 }

14 substitutions.search_replace_pairs = [

15 ... # omitted for brevity

16] + substitutions.search_replace_pairs;

17 }

\thisPageBackgroundImage[trim=10 20 30 40]{front-cover}

The commands discussed so far in this section are for manipulating
the background of the current page. Canthology provides corresponding
commands for manipulating the background of every page (starting with
the current one):

\everyPageBackgroundCommand{\command}

\everyPageBackgroundColor{name}

\everyPageBackgroundColor[mode]{specification}

\everyPageBackgroundImage[options]{fileName}

If you use one of the “every page background” commands, then later on
you can clear the page background by using the following command:

\clearPageBackground

9.7 Creating a Document in Multiple Formats

When you write a document, you might want to make it available in multi-
ple formats, for example, formatted for printing on US Letter paper (which

9.7. Creating a Document in Multiple Formats 91

Figure 9.6: Title page with a colour background

18th Century Poetry

John Smith

Poems for the Poetry 201 course, 2011–2012

Department of English, ACME University

92 Chapter 9. Next Steps

is widely used in America), A4 paper (which is widely used in much of
the rest of the world), and A5 paper (for on-screen viewing). This goal can
be achieved easily with Canthology, as I explain in this section. The dis-
cussion focusses on Figure 9.7, which shows the outline of a Canthology
configuration file.

Figure 9.7: Outline of a Canthology configuration file
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:a4";

4 root_file {

5 base_name = "my-anthology" + macro.paperSizeSuffix;

6 preamble = preamble + [...];

7 front_matter = [...];

8 main_matter = [...];

9 back_matter = [...];

10 }

11 substitutions.search_replace_pairs = [

12 ...

13] + substitutions.search_replace_pairs;

14 }

A slightly tedious way to produce the document in multiple formats
is to run Canthology several times, each time modifying line 3 of the
configuration file to copy from a desired scope: book:a4, book:a5 or
book:letter. The use of macro.paperSizeSuffix in line 5 ensures that
the generated PDF files will have the paper size embedded in their names.

By making a slight change to the configuration file, as shown in Fig-
ure 9.8, you can avoid the need to edit the file every time you want to
change the paper size.

Line 2 is a conditional assignment statement: the value "book:a4" is
assigned to the format variable only if that variable does not already have
a value. By default, the format variable will not already have a value, so
the assignment will take place. However, Canthology provides a "-set

name value" command-line option that can be used to assign value to the
name variable before parsing the configuration file. For example, running
Canthology as follows will assign the value "book:letter" to format:

9.8. The Copyright Page 93

Figure 9.8: Multi-format Canthology configuration file
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 format ?= "book:a4";

3 anthology1 {

4 @copyFrom format;

5 root_file {

6 base_name = "my-anthology" + macro.paperSizeSuffix;

7 preamble = preamble + [...]; # omitted for brevity

8 front_matter = [...]; # omitted for brevity

9 main_matter = [...]; # omitted for brevity

10 back_matter = [...]; # omitted for brevity

11 }

12 substitutions.search_replace_pairs = [

13 ... # omitted for brevity

14] + substitutions.search_replace_pairs;

15 }

canthology -set format book:letter

The @copyFrom statement on line 4 copies from the scope specified by the
value of the format variable.

The overall effect of those small changes is that the configuration file
can now adapt itself to the desired output format specified by a command-
line option. The following commands show how Canthology can be run
three times to produce the document in three different output formats:

canthology -set format book:a4

canthology -set format book:a5

canthology -set format book:letter

Such a sequence of commands could be placed in a UNIX shell script, a
Windows ".bat" file, a Makefile or an Ant build.xml file. Doing this
makes it possible to automate the generation of a document in multiple
output formats.

9.8 The Copyright Page

You might want the page immediately following the title page of a book
to contain a copyright notice. The file example-copyright-template.tex

94 Chapter 9. Next Steps

(located in the etc/latex directory of your Canthology installation) pro-
vides a starting-point for such a page. Figure 9.9 on the next page shows
what the file looks like when typeset.

Obviously, the typeset page shown is not suitable for use “as is” in a
book. Instead, you should copy example-copyright-template.tex into
the directory containing the ".tex" files for your book, rename the copied
file to be, say, copyright.tex, and then edit the file to suit your needs.

As you can see in Figure 9.9, the file contains copyright notices for
two popular copyright licenses. If you want to use one of those in your
book, then you can just delete the text of the unwanted license from your
(copied) copyright.tex file.

To add copyright.tex to your book, you should edit your Canthology
configuration file and modify the root_file.front_matter variable so it
contains the line shown in a bold font below:

root_file {

base_name = "my-anthology" + macro.paperSizeSuffix;

front_matter = [

"\input{titlepage-template-1.tex}",

"\input{copyright.tex}",

macro.tableofcontents,

];

main_matter = [...];

back_matter = [...];

}

9.9 Pages for Praise and a Dedication in a Book

Some books have a page near the start that quotes praising comments from
book reviews. Canthology provides the \praise command for typesetting
such comments. This command takes two parameters: the name of the
person making the comment, and the text of the comment. For example,
the following command:

\praise{Ann Other}{A very funny book. It contains many

9.9. Pages for Praise and a Dedication in a Book 95

Figure 9.9: Formatting of example-copyright-template.tex

Use the following text for the GNU Free Documentation Licence.

Copyright c© (COPYRIGHT-YEAR-PLACEHOLDER) (COPYRIGHT-
OWNER-PLACEHOLDER). Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in Appendix ??.

Use the following text for the Creative Commons “share-alike” licence.

Copyright c© (COPYRIGHT-YEAR-PLACEHOLDER) (COPYRIGHT-
OWNER-PLACEHOLDER).

This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Use text like the following if you need to give acknowledgements for
the use of, say, a cover photograph.

The cover photograph is the copyright of (COPYRIGHT-COVER-
PHOTOGRAPH). Used with permission.

96 Chapter 9. Next Steps

laugh-out-loud moments, and a hilarious build-up to a

farcical climax.}

is typeset as follows:

“A very funny book. It contains many laugh-out-loud moments,
and a hilarious build-up to a farcical climax.”

— Ann Other

Figure 9.10 on the next page shows the example-praise-template.tex

file that you can find in the etc/latex directory of an installation of Can-
thology. The commands at the start of the file and the end of the file
ensure that the page is typeset nicely in both PDF and HTML formats.
You should ignore those commands, and just focus on the examples of the
\praise commands.

The typeset output of example-praise-template.tex is shown in Fig-
ure 9.11 on page 98.

If you decide you want to have such a page near the start of your book,
then you should copy the example-praise-template.tex file from the
$CANTHOLOGY_HOME/etc/latex directory to the directory where you have
the ".tex" files for your book. You might want to rename the copied file
to remove the "example-" prefix. Then edit the copied file to insert real
reviewers’ comments. Finally, edit your Canthology configuration file to
add line 8 as shown in Figure 9.12 on page 99. Also ensure that the con-
figuration file contains a substitution value for "(TITLE-PLACEHOLDER)"

(line 16).
Figure 9.12 on page 99 also shows how to add a dedication page to

your book. Line 9 inputs dedication-template.tex, and line 18 specifies
the text of the placeholder to be used. The typeset result is shown in
Figure 9.13 on page 100.

9.10 Cross References

When writing documents, I sometimes want to provide a cross-reference
to another part of the document. For example, if I want to remind readers

9.10. Cross References 97

Figure 9.10: The example-praise-template.tex file

\cuthere{now}{Praise for \emph{(TITLE-PLACEHOLDER)}}

\cutname{praise.html}

\section*{Praise for \emph{(TITLE-PLACEHOLDER)}}

\thispagestyle{empty}

\praise{One Person}{A brilliant, insightful book.}

\praise{Jane Doe, columnist, {The Popular Newspaper}}{The author’s

insights are shockingly pragmatic. Many other authors express their

thesis in dry, academic prose which, more often than not, serves to

hide flaws in the logic of their arguments. This author bucks the trend

by writing in a lucid style that lets his wisdom shine through.}

\praise{Ann Other}{A very funny book. It contains many laugh-out-loud

moments and a hilarious build-up to a farcical climax.}

\praise{John Smith, CEO of Standard Example Co.}{The book offers some

good ideas for making sure your organisation’s employees are empowered

to do their jobs without having to battle bureaucratic red tape on a

daily basis.}

\newpage

how to install Canthology, then I might write “You can find details of this
in Section 6.2 on page 42”. In this section, I explain the basic LATEX com-
mands for creating such cross references and Canthology’s simplification
wrapper around those LATEX commands.

Cross-referencing commands are unlikely to be useful if you are using
Canthology to produce, say, an anthology of short stories—because the
text in one short story is unlikely to need to cross reference another short
story. However, if you are writing a technical article or a product manual,
then you are much more likely to want to provide cross references between
different parts of the document.

Most books on LATEX explain how to do cross-referencing in a docu-
ment. But for the benefit of readers who have yet to read such a book,
I provide a brief overview in Section 9.10.1. Readers who are already

98 Chapter 9. Next Steps

Figure 9.11: Formatting of example-page-template.tex

Praise for 18th Century Poetry

“A brilliant, insightful book.”
— One Person

“The author’s insights are shockingly pragmatic. Many other authors express
their thesis in dry, academic prose which, more often than not, serves to hide
flaws in the logic of their arguments. This author bucks the trend by writing in
a lucid style that lets his wisdom shine through.”

— Jane Doe, columnist, The Popular Newspaper

“A very funny book. It contains many laugh-out-loud moments and a hilarious
build-up to a farcical climax.”

— Ann Other

“The book offers some good ideas for making sure your organisation’s employees
are empowered to do their jobs without having to battle bureaucratic red tape on
a daily basis.”

— John Smith, CEO of Standard Example Co.

9.10. Cross References 99

Figure 9.12: Configuration to add praise and dedication pages to a book
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:a4";

4 root_file {

5 base_name = "my-anthology" + macro.paperSizeSuffix;

6 front_matter = [

7 "\input{titlepage-template-1.tex}",

8 "\input{praise-template.tex}",

9 "\input{dedication-template.tex}",

10 macro.tableofcontents,

11];

12 main_matter = [...];

13 back_matter = [...];

14 }

15 substitutions.search_replace_pairs = [

16 "(TITLE-PLACEHOLDER)", "18th Century Poetry",

17 "(AUTHOR-PLACEHOLDER)", "John Smith",

18 "(DEDICATION-PLACEHOLDER)", "For Sam,\\the love of my life.",

19 ...

20] + substitutions.search_replace_pairs;

21 }

familiar with the \label, \ref and \pageref commands can skip to Sec-
tion 9.10.2 on page 102.

9.10.1 The \label, \ref and \pageref Commands

Creating cross references in a LATEX document is a two-step process.

1. You use the \label command to define a label (that is, name) for
“something” in a document. The “something” might be a part, chap-
ter, section, subsection, floating figure or a table.

2. Once a label has been defined, you can then use the \ref or \pageref
commands to provide a cross reference to it.

You can see some examples of how to define labels in Figure 9.14 on
page 101.

100 Chapter 9. Next Steps

Figure 9.13: Formatting of dedication-template.tex

For Sam,
the love of my life.

9.10. Cross References 101

Figure 9.14: Examples of the \label command
\chapter{How Canthology Operates}

\label{ch:op}

\section{Introduction}

\label{sect:op:intro}

... % text in section omitted for brevity

\section{Configuration File and Scopes}

\label{sect:op:cfg-file-and-scopes}

... % text in section omitted for brevity

Each time you execute a command such as \part, \chapter, \section,
\subsection or \caption (used in floating figures and tables), it incre-
ments some counters specific to that command. The \label command
associates its parameter with the most recently updated counter values.

The \ref command converts a label into the label’s counter value. The
example below uses the labels defined in Figure 9.14 as parameters to the
\ref command:

Chapter~\ref{ch:op} starts with

Section~\ref{sect:op:intro} and then continues with

Section~\ref{sect:op:cfg-file-and-scopes}.

LATEX typesets that as follows:

Chapter 8 starts with Section 8.1 and then continues with Sec-
tion 8.2.

There are two points worth noting about the above example.
First, ~ is used to insert a non-breakable space between “Chapter” or

“Section” and the following number. This is because professional typeset-
ters consider it bad style to allow a line break at such a place.

Second, although you can use whatever names you want for labels,
you will find it easier to maintain documents if the names of labels follow
a consistent naming scheme. I like to use "ch:" as a prefix for chapter
labels, "sect:" as a prefix for section and subsection labels, "fig:" as a
prefix for captions in floating figures, and so on. After the prefix, I like the

102 Chapter 9. Next Steps

remainder of the label to be an abbreviation of the name of the chapter,
section, figure or whatever.

The \pageref command converts a label into a page number. It is
typically used as follows:

See Section~\ref{sect:op:cfg-file-and-scopes} on

page~\pageref{sect:op:cfg-file-and-scopes} for more

details.

9.10.2 Convenience Commands for Cross Referencing

It is possible to use \newcommand to define more concise commands for
cross-referencing as the example below illustrates:

\newcommand{\xp}[1]{Part~\ref{#1}}

\newcommand{\xa}[1]{Appendix~\ref{#1}}

\newcommand{\xc}[1]{Chapter~\ref{#1}}

\newcommand{\xs}[1]{Section~\ref{#1}}

\newcommand{\xf}[1]{Figure~\ref{#1}}

\newcommand{\xt}[1]{Table~\ref{#1}}

\newcommand{\xpp}[1]{Part~\ref{#1} on page~\pageref{#1}}

\newcommand{\xap}[1]{Appendix~\ref{#1} on

page~\pageref{#1}}

\newcommand{\xcp}[1]{Chapter~\ref{#1} on

page~\pageref{#1}}

\newcommand{\xsp}[1]{Section~\ref{#1} on

page~\pageref{#1}}

\newcommand{\xfp}[1]{Figure~\ref{#1} on

page~\pageref{#1}}

\newcommand{\xtp}[1]{Table~\ref{#1} on

page~\pageref{#1}}

The naming scheme used in the above commands is as follows.

• The first letter of the command is x, which English speakers some-
times use as an abbreviation for “cross”. In the above commands, it
is used as an abbreviation of “cross reference”.

9.10. Cross References 103

• The next letter indicates what is being cross-referenced. Thus \xc

produces a cross reference to a chapter, \xs produces a cross refer-
ence to a section, and so on.

• If the command name consists of three letters ending in p, then the
comamnd prints “on page . . . ” after the cross reference.

Earlier, I gave some examples of using the \ref and \pageref com-
mands:

Chapter~\ref{ch:op} starts with

Section~\ref{sect:op:intro} and then continues with

Section~\ref{sect:op:cfg-file-and-scopes}.

See Section~\ref{sect:op:cfg-file-and-scopes} on

page~\pageref{sect:op:cfg-file-and-scopes} for more

details.

Using the newly defined \xc, \xs and \xsp commands, those examples
can be written more compactly:

\xc{ch:op} starts with \xs{sect:op:intro} and then

continues with \xs{sect:op:cfg-file-and-scopes}.

See \xsp{sect:op:cfg-file-and-scopes} for more details.

There is further room for improvement. The varioref package [7] defines
a command called \vref, that I will explain by an example. Consider the
following statement:

I discuss that topic in Section~\vref{sect:something}.

LATEX may typeset that sentence in one several ways, including:1

1. I discus that topic in Section 3.9.

2. I discus that topic in Section 3.9 on page 42.
1The varioref package provides the ability to customise the different variations of wording, but I will

discuss only the above examples to give a flavour of the package’s ability.

104 Chapter 9. Next Steps

3. I discus that topic in Section 3.9 on the facing page.

4. I discus that topic in Section 3.9 on the next page.

5. I discus that topic in Section 3.9 on the following page.

6. I discus that topic in Section 3.9 on the previous page.

7. I discus that topic in Section 3.9 on the preceding page.

The first wording might be used if the referenced label is on the same page.
If the referenced label is two or more pages away, then the second wording
is used. If the document is printed in two-sided mode, then the varioref

package assumes the document will be bound like a book, which means
a reader can see two pages at a time. In this case, if the referenced label
is on the other visible page, then the third wording (that is, “on the facing
page”) is used. If the referenced label is only one page away but is not on
the facing page, then one of the last four variations of wording is used.

If we want to take advantage of this flexibility offered by the varioref

package, then we can alter the definitions of the \xpp, \xap, \xcp, \xsp,
\xfp and \xtp commands as shown below:

\newcommand{\xp}[1]{Part~\ref{#1}}

\newcommand{\xa}[1]{Appendix~\ref{#1}}

\newcommand{\xc}[1]{Chapter~\ref{#1}}

\newcommand{\xs}[1]{Section~\ref{#1}}

\newcommand{\xf}[1]{Figure~\ref{#1}}

\newcommand{\xt}[1]{Table~\ref{#1}}

\newcommand{\xpp}[1]{Part~\vref{#1}}

\newcommand{\xap}[1]{Appendix~\vref{#1}}

\newcommand{\xcp}[1]{Chapter~\vref{#1}}

\newcommand{\xsp}[1]{Section~\vref{#1}}

\newcommand{\xfp}[1]{Figure~\vref{#1}}

\newcommand{\xtp}[1]{Table~\vref{#1}}

Canthology implements the above commands as shown.
Since the \vref command is so flexible, you may wonder why Can-

thology provides two variations of each cross-referencing command, for

9.10. Cross References 105

example, the flexible \xsp along with its less flexible \xs counterpart.
There are two reasons for this.

First, let’s assume I am writing a paragraph in which I discuss “Fig-
ure 2.9 on page 26”. The first time I mention the Figure 2.9, I want to
specify its page number as a convenience to readers, so I use the \xfp

command for the cross reference. But if I mention the figure a second
(and possibly even a third) time in the same paragraph, then it is redun-
dant (and irritating to readers) to keep specifying its page number, so I use
the \xf command instead.

Second, there is a boundary case that can sometimes cause \vref to
fail, in which case LATEX reports an error message and stops. To understand
this, assume that on page 25 of a document, I want to cross-reference
Figure 2.9 that happens to be on the next page. In this case, we might
expect:

Figure~\vref{fig:something}

to produce:

Figure 2.9 on the next page

Most of the time, that is what happens. However, a problem occurs if the
text “Figure 2.9 on the next page” is being typeset at the very bottom of
page 25 and a page break occurs between “Figure 2.9” and “on the next
page”. In this case, the text “on the page next” would no longer be valid
since that text appears on the same page as the figure. In such a case, the
\vref command reports an error and LATEX stops. On the rare occasion
when this happens, it is useful to replace use of the \xfp command with
\xf to eliminate the error message.

9.10.3 Simplifying Cross References Produced by \vref

Although the varioref package is very flexible, its assumption that a two-
sided document will be bound like a book—and thus two pages will be
visible at the same time—is not always correct. For example, a two-sided
document may be stapled in the top left-hand corner. Or you might read a
PDF version of the document on a computer screen, using a PDF viewer

106 Chapter 9. Next Steps

that is configured to show only one page at a time. In such cases, it can
be annoying to read, “Figure 2.9 on the facing page” because there isn’t a
visible facing page.

Another potential annoyance is that the varioref package likes to add
some variation into the text used for cross references. For example, the
\vref command sometimes might claim that Figure 2.9 is “on the next
page” and other times might claim that it is “on the following page”. Such
variations in phrasing might seem like a good idea, because it helps to
avoid monotony. However, it is possible for such a variation in wording to
occur between different runs of LATEX, and the difference in length of the
text might cause a bad line break or a page break at unpredictable times.
For this reason, it can be useful to intruct the varioref package to not use
variations in phrasing.

The canthology package defines a command that instructs varioref

to avoid: (1) using the phrase “on the facing page”, and (2) alternating be-
tween “on the previous/next page” and “on the preceding/following page”.
The name of this command is \simplifyVariorefReferences.

Part IV

Using Canthology to Generate
HTML Files

107

Introduction to Part IV

If you have read all the preceding chapters, then you know how to use
Canthology to create documents in PDF format. Now, in Part IV, I explain
some additional information you will need to know if you want to use
Canthology to create documents in HTML format.

108

Chapter 10

Overview of HEVEA

10.1 Introduction

Canthology uses the HEVEA application [6] to convert LATEX documents into
HTML format.1 In this chapter, I provide background information about
HEVEA that is relevant to users of Canthology. This chapter is not intended
to be a substitute for reading the HEVEA manual, but rather complements it.
My advice is to read this chapter to get an overview of HEVEA and how to
use it with Canthology. Afterwards, you should read the HEVEA manual to
learn how to use HEVEA properly.

Currently, the use of HEVEA with Canthology is not supported on Win-
dows.

10.2 LATEX-to-HTML Converters

There are several (competing) tools for converting LATEX-based documents
into HTML, including LATEX2HTML, TtH, TEX4ht, PlasTEX and HEVEA.
None of these tools has a 100% success rate in such conversions. This
is because there are some LATEX (and TEX) constructs that have no coun-
terparts in HTML. Nevertheless, a large subset of commonly-used LATEX

1The name HEVEA is a pun on LATEX. Hevea Brasilliensis, also known as the Pará rubber tree or simply the
rubber tree, produces a sap-like substance called latex, which is a source of natural rubber.

109

110 Chapter 10. Overview of HEVEA

commands do have counterparts in HTML. LATEX-to-HTML converters
tend to work well with LATEX documents that restrict themselves to such
commands.

Some converters provide a way for users to extend the converter with
rules for processing LATEX commands for which the converter does not
provide built-in support. Thus, use of a LATEX-to-HTML converter tends
to involve an iterative approach:

1. Run the converter on a LATEX document.

2. Examine the generated HTML to see if any LATEX commands were
not translated properly. If so, then:

3. Extend the converter with a new rule that enables a troublesome
LATEX command to be correctly converted to HTML. (If that is not
possible, then rewrite the LATEX document to avoid the need to use
the troublesome LATEX command.) Then go back to step 1.

Use of a LATEX-to-HTML converter can be frustrating, at least initially,
because you are likely to spend a lot of time working on step 3 in the above
list. However, you will eventually learn which LATEX commands can be
used without causing difficulty for a HTML conversion. This knowledge
will make it far easier to write future LATEX documents that are compatible
with the converter.

My favourite LATEX-to-HTML converter is called HEVEA. In this chapter,
I explain how to use Canthology with HEVEA.

10.3 Obtaining and Installing HEVEA

HEVEA is bundled with some LATEX distributions and available in the appli-
cation repositories for some Linux distributions. If you cannot get HEVEA
from those sources, then you can download it from the HEVEA website.2

HEVEA was designed for use on Linux and other UNIX-like operating sys-
tems. However, a Windows port of HEVEA is also available.3

2http://hevea.inria.fr/
3http://facweb.knowlton.ohio-state.edu/pviton/support/winport.html

10.4. Running HEVEA 111

10.4 Running HEVEA

The HEVEA distribution contains several several applications that are in-
tended to be used together.

hevea This application translates a ".tex" document into a monolithic
HTML file.

hacha This application splits a monolithic HTML file produced by hevea

into a collection of HTML files. By default, hacha creates a separate
HTML file for each chapter of a book, or a separate HTML file for
each section of an article. However, commands (defined in the hevea

package) that you can embed in your ".tex" document enable you
to choose a different granularity of division.

imagen The hevea application detects when a ".tex" document uses im-
age files, for example, in \includegraphics commands. Details of
these image-using commands are written to a new temporary ".tex"

file. The imagen application is then run on this temporary file to
convert all the images into a HTML-friendly format, such as GIF or
PNG.

esponja A HTML file generated by hevea contains HTML markup that
can sometimes be needlessly verbose. The esponja utility can be
run to optimise the HTML markup, thus decreasing the size of the
HTML file.

bibhva LATEX has a companion application called bibtex for managing
bibliography information. Unfortunately, subtle differences between
the behaviour of LATEX and HEVEA mean that bibtex does not work
unaided with HEVEA. The bibhva application acts as a wrapper around
bibtex to resolve this incompatibility.

All but one of the commands described above are compiled applications.
The exception is imagen, which is a UNIX shell script, and its correct
working relies on the presence of many other commands (such as gs and
pnmtopng) that are commonly available on UNIX systems. Such com-
mands are not available by default on Windows. For this reason, HEVEA

112 Chapter 10. Overview of HEVEA

can be used with ".tex" documents that may contain graphics on UNIX,
but can be used only with image-less ".tex" documents on Windows.
Canthology makes this situation even worse: its use of HEVEA relies upon
the use of some commands (such as GNU make and a Tcl interpreter) that
are widely available on UNIX machines, but are not installed by default on
Windows. For this reason, using Canthology with HEVEA is not currently
supported on Windows.

10.5 How HEVEA Handles Unrecognised Commands

HEVEA implements a large subset of commonly-used LATEX commands and
a small subset of lower-level TEX commands. When HEVEA encounters a
command it does not recognise, it prints a warning diagnostic message
to the console and ignores the command’s name, but it copies the com-
mand’s arguments, if any, to the output file. For example, assume HEVEA
encounters the following in a ".tex" document:

I am \emp{very} happy to see you.

In this case, HEVEA does not recognise the \emp command (it is a typo, and
should be \emph), so it prints a warning message on the console and writes
the following to the output HTML file:

I am very happy to see you.

(When using HEVEA with Canthology, you will need to run canthology

with the "-d 3" command-line option to see the warning messages re-
ported by HEVEA.)

In practice, many unrecognised commands are due to HEVEA imple-
menting only a subset of LATEX and TEX commands (rather than typos in
the input document).

The “print a warning message and carry on” behaviour can be useful,
especially if you are new to HEVEA. This is because it enables you to see
that HEVEA correctly converts 90% of your document to HTML, and most
of the fouled-up 10% is due to just a small number of unrecognised com-
mands that are used frequently. Thus, if you can (somehow) extend HEVEA

10.6. Extending HEVEA 113

to handle those troublesome commands, then HEVEA will be able to process
your entire document.

10.6 Extending HEVEA

Extending HEVEA with new commands usually revolves around implement-
ing packages. You may recall from Section 9.5 on page 85 that LATEX
packages are implemented with ".sty" files. However, HEVEA ignores
".sty" files because they are likely to make use of low-level LATEX or TEX
commands that are not supported by HEVEA. Instead, HEVEA packages are
implemented in ".hva" files, which may make use of the subset of LATEX
commands implemented by HEVEA plus some additional CSS- and HTML-
centric commands provided by HEVEA. Thus, if you want to write a ".hva"

file, you are likely to need to have a working knowledge of HTML and
CSS (cascading style sheets). The discussion in this section assumes such
as working knowledge.

Among HEVEA’s CSS- and HTML-centric commands are the follow-
ing:

\newstyle{name}{settings}

\@open{BLOCK}{attributes}

\@close{BLOCK}

The \newstyle command generates a new CSS style called name that has
the specified settings. For example, the following code:

\newstyle{.example}{margin-left: 4ex; margin-right: 4ex;}

results in the following being added to the style sheet for the generated
HTML document:

.example {margin-left: 4ex; margin-right: 4ex;}

The \@open command creates an opening tag, containing the specified
attributes, for the specified BLOCK. Conversely, \@close creates a clos-
ing tag for the specified BLOCK. For example, the following code:

114 Chapter 10. Overview of HEVEA

\@open{DIV}{class="example"}

...

\@close{DIV}

adds the following to the output HTML file:

<DIV class="example">

...

</DIV>

I will now provide a complete worked example to illustrate typical us-
age of the above HTML-centric commands. I will start by explaining the
functionality offered by the framed package. Then, I will discuss how a
HEVEA version of this package (that is, a file called framed.hva) can be
implemented.

10.6.1 The framed package

The framed package [1] defines three environments called framed, shaded
and leftbar. For example, the following code:

\setlength{\FrameSep}{3pt}

\begin{framed}

\noindent

This sentence is boring; it just contains some

example text. This sentence is boring; it just

contains some example text. This sentence is

boring; it just contains some example text. This

sentence is boring; it just contains some example

text.

\end{framed}

produces the following output:

This sentence is boring; it just contains some example text. This sentence
is boring; it just contains some example text. This sentence is boring; it
just contains some example text. This sentence is boring; it just contains
some example text.

10.6. Extending HEVEA 115

As you can see, the framed environment draws a frame around the
contents of the environment. By default, there is a lot of space between
the frame and the text it contains. However, in the above example I used
the command \setlength{\FrameSep}{3pt} to reduce that space, so the
frame fits more snugly. In addition, I used \indent to prevent the first
(and, in this case, only) paragraph within the frame starting with an in-
dented line.

The shaded environment does not draw a frame around the contents of
its environment. Instead, it paints the background with the color specified
by shadecolor, which the author of a document must previously have
defined via the \definecolor command [3]. For example, the following
code:

\definecolor{shadecolor}{rgb}{0.9,0.9,1.0}

\begin{shaded}

\noindent

This sentence is boring; it just contains some

example text. This sentence is boring; it just

contains some example text. This sentence is

boring; it just contains some example text. This

sentence is boring; it just contains some example

text.

\end{shaded}

produces the following output:

This sentence is boring; it just contains some example text. This sentence
is boring; it just contains some example text. This sentence is boring; it
just contains some example text. This sentence is boring; it just contains
some example text.

The leftbar environment draws a thick black line on the left side of
the contents of the environment. For example, the following code:

\begin{leftbar}

\noindent

116 Chapter 10. Overview of HEVEA

This sentence is boring; it just contains some

example text. This sentence is boring; it just

contains some example text. This sentence is

boring; it just contains some example text. This

sentence is boring; it just contains some example

text.

\end{leftbar}

produces the following output:

This sentence is boring; it just contains some example text. This sen-
tence is boring; it just contains some example text. This sentence is
boring; it just contains some example text. This sentence is boring; it
just contains some example text.

In addition to the framed, shaded and leftbar environments, the pack-
age defines commands that can be used as building blocks for users to de-
fine other environments. However, a discussion of those additional com-
mands is outside the scope of this manual.

10.6.2 Implementing framed.hva

Although the HEVEA distribution provides ".hva" implementations of more
than twenty popular packages, it does not provide an implementation of
the framed package. To work around this, I wrote the HEVEA implementa-
tion shown in Figure 10.1 on the next page.

The \newenvironment command takes three parameters. The first is
the name of the environment being defined. The second and third param-
eters specify commands to be executed at the beginning and ending of the
environment.

The definition of the framed environment (lines 4–8) uses the \@open

and \@close commands to open and close an HTML DIV element whose
class attribute has the value "framed". The \newstyle command on
lines 9–15 defines the framed CSS class that specifies a one-pixel-wide,
solid black border is drawn around the DIV element, with 8 pixels of
padding between the border and the left and right margins of the text.

10.6. Extending HEVEA 117

Figure 10.1: The framed.hva file
1 \ProvidesPackage{framed}

2 \RequirePackage{color}

3

4 \newenvironment{framed}{%

5 \@open{div}{class="framed"}%

6 }{%

7 \@close{div}%

8 }

9 \newstyle{.framed}{

10 border: 1px solid black;

11 padding-left: 8pt;

12 padding-right: 8pt;

13 padding-top: 0pt;

14 padding-bottom: 0pt;

15 }

16

17 \newenvironment{leftbar}{%

18 \@open{div}{class="leftbar"}

19 }{%

20 \@close{div}

21 }

22 \newstyle{.leftbar}{

23 border-left: 4px solid black;

24 padding-left: 6pt;

25 padding-right: 6pt;

26 padding-top: 0pt;

27 padding-bottom: 0pt;

28 }

29

30 \newenvironment{shaded}{%

31 \@open{TABLE}{BORDER="0" CELLPADDING="8" WIDTH="100\%"

32 BGCOLOR=\@getcolor{shadecolor}}

33 \@open{TR}{}

34 \@open{TD}{}

35 }{

36 \@close{TD}

37 \@close{TR}

38 \@close{TABLE}

39 }

118 Chapter 10. Overview of HEVEA

The leftbar environment (lines 17–21) and its accompanying CSS
style (lines 22-28) are defined in a similar manner.

The definition of the shaded environment (lines 30–39) is more ver-
bose. It creates a TABLE element, containing a single cell, in which the
background color (that is, the BGCOLOR attribute) is set to the value of
\@getcolor{shadecolor}. The low-level \@getcolor command converts
the specified color (passed as a parameter) from the specification syntax
used by the color package into the syntax used in HTML files.

HEVEA does not implement the LATEX concept of a “length”. Instead, it
ignores all uses of the \newlength, \setlength and \addtolength com-
mands. For this reason, the framed.hva file does not (and cannot) im-
plement support for the \FrameSep length. Thus, there is no way for the
author of a document to alter the spacing between the box of the framed

environment and the text inside it. Instead, this spacing is fixed by the
CSS framed class.

The above worked example illustrates several issues that commonly
arise when implementing ".hva" versions of packages.

First, a person implementing a ".hva" file may need to have a working
knowledge of HTML and CSS.

Second, the implementation of commands in a ".hva" file is often sim-
pler than their corresponding implementation in a ".sty" file. This is be-
cause HTML and CSS are much simpler (and less powerful) markup lan-
guages than LATEX. In the case of the framed package, the LATEX version
is complex because it needs to deal with the possibility of an environment
spanning a page break. The HTML implementation of the package is sim-
pler because it does not have to worry about such page breaks.

Finally, it is common for a ".hva" file to implement a subset of the
functionality provided in a package. For example, framed.hva ignores
attempts to set the \FrameSep length, and it does not provide building-
block commands for users to define other framed-like environments.

10.7. The hevea Package 119

10.7 The hevea Package

A package called hevea is distributed with HEVEA. The HEVEA implemen-
tation of the hevea package defines about 30 commands that enable you
to fine-tune how a document is converted into HTML. The LATEX imple-
mentation of the package provides empty implementations of those same
commands. For example, the LATEX implementation of the \newstyle

command (discussed in Section 10.6 on page 113) does nothing.

10.8 The latexonly and htmlonly Environments

The hevea package defines environments called latexonly and htmlonly.
Any text you place in a latexonly environment is used in the document
only if you process the document with a LATEX-related command, such as
latex or pdflatex. Conversely, any text you place in a htmlonly envi-
ronment is used in the document only if you process the document with
hevea. The following example illutrates the use of those commands:

Sentence~1 is in all versions of this manual.

\begin{latexonly}

Sentence~2 is in only the PDF version of this manual.

\end{latexonly}

\begin{htmlonly}

Sentence~3 is in only the HTML version of this manual.

\end{htmlonly}

That example results in the following output in the version of this manual
you are currently reading:

Sentence 1 is in all versions of this manual. Sentence 2 is in
only the PDF version of this manual.

Although it is good to know that the latexonly and htmlonly environ-
ments exist, in practice, you are likely to use them very infrequently, if at
all. For example, this manual is over 200 pages long, yet aside from the
above example, I have used the latexonly and htmlonly environments

120 Chapter 10. Overview of HEVEA

just three times. In each case, it was to make a minor adjustment to the
visual appearance of the formatted document.4

It is important to note that environments work only in the main part of
a document, that is, between \begin{document} and \end{document}. In
particular, you cannot use the latexonly and htmlonly environments in
the preamble of a document to help you define LATEX- and HEVEA-specific
versions of commands. Instead, if you need to define LATEX- and HEVEA-
specific versions of some commands, then you should write ".sty" and
".hva" versions of a package. You can find a discussion of how to write
packages in Section 9.5 on page 85 and also Section 10.6 on page 113.

10.9 Specifying the Names of HTML Files

Let’s assume you run hacha to convert a document into a monolithic
HTML file, and afterwards you run hacha on that file to split it into multi-
ple HTML files. If your document uses the book class, then hacha creates
a separate HTML file for each chapter. Conversely, if your document uses
the article class, then hacha creates a separate HTML file for each sec-
tion.

By default the names of the HTML files will be the name of the root
file of your document (without the ".tex" extension) followed a three-
digit number and then ".html". For example, if the root file of your
document is short-stories.tex, then the HTML files created by hacha

will have names like short-stories001.tex, short-stories002.tex,
short-stories003.tex, and so on.

You can override the default naming scheme by using the \cutname

command, which is defined in the hevea package. This command takes
one parameter that specifies the file name that hacha should use when
splitting the current part of the document into a separate HTML file. You
should put a \cutname command after each \chapter command in a book,
or after each \section command in an article. For example:

4In one case, I used the latexonly environment to introduce some extra vertical spacing at the top of the
dedications page in the PDF version of this manual. In the other two cases, I wanted to force a line break in the
PDF version of this manual, but not have such a line break in the HTML version.

10.10. Misfeatures of HEVEA 121

\chapter{The Adventure Starts}

\cutname{start.html}

...

\chapter{Disaster Strikes}

\cutname{disaster-strikes.html}

...

\chapter{A Happy Ending}

\cutname{happy-ending.html}

...

10.10 Misfeatures of HEVEA

Although HEVEA is very useful, it does have some misfeatures. In this
section, I discuss the workarounds that I have developed for some of these.

10.10.1 The hevea-fix package

I have implemented a package called hevea-fix, which I distribute with
Canthology. The ".hva" implementation of the package redefines some
HEVEA commands so they mimic their LATEX counterparts more closely.
The ".sty" implementation of this package is empty because it does not
need to modify LATEX. What follows is a brief summary of the capabilities
provided by hevea-fix.hva.

Unfortunately, HEVEA does not implement \frontmatter, \mainmatter
or \backmatter. Because of this, front and back matter such as a preface
or glossary appear as numbered (rather than as unnumbered) chapters or
sections. The hevea-fix.hva file fixes this problem.

The HEVEA implementation of the hyperref package fails to implement
the \phantomsection command; hevea-fix.hva fixes this problem.

The hevea application inserts comments into the generated HTML file.
These comments instruct hacha how to divide the monolithic HTML file
into a collection of HTML files—by default, a separate file for each chap-
ter. A bug or misfeature in the hacha application causes it to process
comments relating to \part commands in a strange and unsatisfactory

122 Chapter 10. Overview of HEVEA

manner. The hevea-fix.hva file resolves this by redefining the HEVEA
command that inserts comments into the generated HTML file. The re-
sult is that \part-related comments are now identical to \chapter-related
comments, so hacha processes them in a satisfactory manner.

LATEX uses (only) vertical spacing to separate a floating figure or table
from the main body of text. Some authors prefer to have a more visible
boundary between a figure or table and the main body of text. For ex-
ample, the visible boundary might be a box (such as that provided by the
framed environment) surrounding the contents of the figure, or perhaps
horizontal lines drawn above and below the figure or table. Such au-
thors have to explicitly use LATEX commands to draw such boundaries. In
contrast, HEVEA automatically puts a visible boundary around a figure or
table. This boundary takes the form of horizontal lines above and below
the figure or table. This is a problem because the presence of the HEVEA-
provided boundary often visually clashes with whatever boundary has
been provided by the author using LATEX commands. The hevea-fix.hva

file fixes this problem by redefining a low-level HEVEA command so the
horizontal lines are not drawn.

LATEX has commands that can be used to control the co-existence of text
and floating figures or tables on a page: \topfraction, \bottomfraction,
\textfraction and \floatpagefraction. HEVEA neglects to define those
commands, which results in warning messages being printed if those com-
mands are used in a document. The hevea-fix.hva file fixes this problem
by defining dummy versions of those commands.

In LATEX, there are subtle differences in how the quote, quotation and
verse environments are typeset. HTML is not flexible enough to repro-
duce those subtle differences. For this reason, HEVEA maps both the quote

and quotation environments into a BLOCKQUOTE HTML element. That is
perfectly reasonable. What I find strange is that HEVEA chooses to not sup-
port the verse environment. The hevea-fix.hva file rectifies this by also
mapping the verse environment into a BLOCKQUOTE HTML element.

10.10. Misfeatures of HEVEA 123

10.10.2 Removing the Pseudo Table of Contents

HEVEA implements the \tableofcontents command. Figure 10.2 shows
a table of contents generated for a document that contains two parts, each
with three chapters.

Figure 10.2: Table of contents produced by hevea

I think you will agree that the table of contents looks nice. Unfortu-
nately, something bizarre happens when you run hacha to split a HTML
file created by hevea into a collection of smaller files. The hacha appli-
cation adds HTML like that shown in Figure 10.3 on the next page to the
first HTML file, which is typically the title page of your document.

The result is that your document contains a badly-formatted, pseudo
table of contents on the title page, plus a real table of contents on another
HTML page. By the way, the first entry in the pseudo table of contents is
a link to the real table of contents!

Unfortunately, hacha does not have a command-line option to disable
the generation of the pseudo table of contents. However, I have written
a script called remove_pseudo_toc.tcl that can remove the pseudo table
of contents and (optionally) replace it with a link to the real table of con-
tents. This script is located in the etc/html-common/scripts directory of
Canthology. If you copy the script into a directory containing HTML files
generated by hacha, then you can use it as follows (assuming index.html

contains the pseudo table of contents):

tclsh remove_pseudo_toc.tcl -contentsname "Contents" \

124 Chapter 10. Overview of HEVEA

Figure 10.3: Pseudo table of contents produced by hacha

index.html -link "Table of Contents"

The -contentsname command-line option instructs the script to look in
the pseudo table of contents in the specified file for a link called Contents.
The script will remove the pseudo table of contents and replace it with a
link to the real table of contents. The name of this new link is specified by
the -link command-line option.

If you want to remove the pseudo table of contents and not provide a
link to the real table of contents, then you run the script as follows:

tclsh remove_pseudo_toc.tcl -contentsname "Contents" \

index.html -nolink

10.10. Misfeatures of HEVEA 125

10.10.3 Automating the Workarounds

As I will discuss in Chapter 11, when you use Canthology with HEVEA,
Canthology adds hevea-fix to the list of packages used by your docu-
ment, and also arranges for remove_pseudo_toc.tcl to be run after hacha.
In these ways, Canthology automates use of the workarounds. Chapter 11

Using HEVEA with Canthology

11.1 Introduction

To use HEVEA with Canthology, you need to modify your Canthology con-
figuration file so your document’s scope copies from one of the html-
related scopes previously listed in Table 7.1 on page 45. You can see an
example of this in line 3 of Figure 11.1.

Figure 11.1: Configuration file for generating HTML
1 @include getenv("CANTHOLOGY_HOME") + "/etc/defaults.cfg";

2 anthology1 {

3 @copyFrom "book:html-many-pages";

4 root_file {

5 base_name = "my-anthology" + macro.macro.paperSizeSuffix;

6 front_matter = [...]; # omitted for brevity

7 main_matter = [...]; # omitted for brevity

8 back_matter = [...]; # omitted for brevity

9 }

10 substitutions.search_replace_pairs = [

11 ... # omitted for brevity

12] + substitutions.search_replace_pairs;

13 }

When you run canthology on this modified configuration file, the gen-
erated HTML file(s) are placed in the output-html subdirectory. Within

126

11.2. The default.html Configuration Scope 127

that directory, the index.html file contains the title page of your docu-
ment.

The rest of this chapter explains how the Canthology-HEVEA integration
works. That knowledge will explain how you can customise some aspects
of the generated HTML pages.

11.2 The default.html Configuration Scope

Figure 11.2 on the next page shows a slightly abridged version of the
default.html scope in the etc/defaults.cfg file of an installation of
Canthology.

The @copyFrom statement (line 2) copies default settings that are shared
with other configuration scopes.

On line 3, the string "output-html" is assigned to the working_dir

variable.
The macro.paperSizeSuffix variable is assigned the value "" (line 5)

because HTML is independent of paper size.
Both hevea and hevea-fix are included in the list of packages used

by the document (line 10). The hevea-fix package was discussed in Sec-
tion 10.10.1 on page 121.

Line 14 adds ".hva" to the copy.file_extensions list. This enables
Canthology to find the ".hva" implementations of package when it en-
counters \usepackage commands.

The extra_files_to_copy variable (lines 15-23) instructs Canthology
to copy specific files—used to help turn a document into HTML pages—
into the working directory. The first file to be copied is Makefile (line 16),
and this is used by the make build command (line 32). The other files to
be copied are required for the Makefile to work properly. In particular:

• The insert_html_header_and_footer.tcl script (line 22) inserts
html-header.txt and html-footer.txt (lines 18–19) into the start
and end of each generated HTML page. You can use this to put,
for example, a company logo and contact details across the top and
bottom of each HTML page.

128 Chapter 11. Using HEVEA with Canthology

Figure 11.2: Outline of the book:html-many-pages configuration scope
1 default.html {

2 @copyFrom "default.common";

3 working_dir = "output-html";

4 macro {

5 paperSizeSuffix = "";

6 ...

7 }

8 root_file {

9 documentclass.name = "book";

10 package.names = [..., "hevea", "hevea-fix", ...];

11 ... # omitted for brevity

12 }

13 copy {

14 file_extensions = [".hva"] + file_extensions;

15 extra_files_to_copy = [

16 "Makefile",

17 "canthology.css",

18 "html-header.txt",

19 "html-footer.txt",

20 "tidy.conf",

21 "scripts/remove_pseudo_toc.tcl",

22 "scripts/insert_html_header_and_footer.tcl",

23];

24 ... # omitted for brevity

25 }

26 build_commands = ["make"];

27 substitutions {

28 search_replace_pairs = [

29 "(MAKEFILE-IMAGEN-OPTIONS-PLACEHOLDER)",

30 "-pdf -png -mag 2000",

31 "(MAKEFILE-INSTALL-DIR-PLACEHOLDER)", "/var/www",

32];

33 }

34 }

• The remove_pseudo_toc.tcl script (line 21) was discussed in Sec-
tion 10.10.2 on page 123. The Makefile runs this script to remove
the pseudo table of contents from the title page of your document.

• The canthology.css file (line 17) is appended to the CSS file for the
generated HTML pages.

11.3. The book:html-many-pages Configuration Scope 129

• The final step in the Makefile is to run the tidy utility to “tidy up”
the HTML files and ensure they adhere to the XHTML standard. The
tidy.conf file (line 20) specifies configuration options for tidy.

The substitutions.search_replace_pairs variable (lines 28–32) is
used to provide values for two variables used in the Makefile.

11.3 The book:html-many-pages Configuration Scope

One variable missing from the default.html scope is copy.search_path,
which specifies the directories in which Canthology should look for the
files listed in copy.extra_files_to_copy. This is because the value of
copy.search_path depends on whether the HTML document will consist
of one or many pages.

Figure 11.3 shows that the book:html-many-pages scope copies from
the default.html scope (line 2) and then sets copy.search_path appro-
priately (lines 4–9).

Figure 11.3: Outline of the book:html-many-pages configuration scope
1 book:html-many-pages {

2 @copyFrom "default.html";

3 copy {

4 search_path = [

5 ".",

6 getenv("CANTHOLOGY_HOME") + "/etc/html-many-pages",

7 getenv("CANTHOLOGY_HOME") + "/etc/html-common",

8 getenv("CANTHOLOGY_HOME") + "/etc/latex",

9];

10 }

11 substitutions {

12 search_replace_pairs = search_replace_pairs + [

13 "(MAKEFILE-TOC-OPTIONS-PLACEHOLDER)",

14 "-link %"Table of contents%" -contentsname %"Contents%"",

15];

16 }

17 }

The book:html-one-page scope is similar, but sets copy.search_path

130 Chapter 11. Using HEVEA with Canthology

to contain etc/html-one-page instead of etc/html-many-pages (line 6).

11.4 The Makefile

The Makefile used to convert the input document into multiple HTML
pages is shown in Figure 11.4.

Readers not familiar with Makefiles should read Section 11.4.1 to get
an overview of the basic concepts and syntax used in Makefiles. Readers
who are already familiar with Makefiles can skip ahead to Section 11.4.2
on page 132.

11.4.1 Overview of Makefile Concepts and Syntax

A Makefile typically contains instructions for turning one or more source-
code files into an executable application. In the case of Canthology, a
Makefile contains instructions for converting ".tex" files into HTML.

An application called make reads a Makefile and executes the instruc-
tions contained in it.

Within a Makefile, a line of the form name=value defines a variable
called name. The value of the variable can later be accessed with the syn-
tax $(name). For example, line 1 in Figure 11.4 on the next page defines
a variable called DOC, and the value of this variable is used in line 9 (and
several other lines).

A line starting with name: defines a target called name. Figure 11.4
contains three targets: html, install and clean. The indented lines im-
mediately following the name of a target are shell commands that need to
be executed to “make” that target. The list of shell commands is termi-
nated by a blank line, the name of the next target or the end of the file.
Thus, lines 9–26 are the commands for making the html target, lines 29–
33 are the commands for making the install target, and lines 36–40 are
the commands for making the clean target.

If the name of a target is specified when running make, then make will
execute the commands associated with that target. For example, run-
ning "make html" executes the commands associated with the html tar-

11.4. The Makefile 131

Figure 11.4: The Makefile used by the html-many-pages scopes
1 DOC=(ROOT_FILE_BASE_NAME)

2 IMAGEN_OPTIONS=(MAKEFILE-IMAGEN-OPTIONS-PLACEHOLDER)

3 INSTALL_DIR=(MAKEFILE-INSTALL-DIR-PLACEHOLDER)

4 TOC_OPTIONS = (MAKEFILE-TOC-OPTIONS-PLACEHOLDER)

5 HTML_FILES = ‘find . -name "*.html"‘

6 GRAPHIC_FILES = ‘find . -name "*.jpg" -o -name "*.gif" -o -name "*.png"‘

7

8 html: clean

9 hevea $(DOC).tex

10 if [-f $(DOC).image.tex]; then \

11 imagen $(IMAGEN_OPTIONS) $(DOC); \

12 fi

13 if [‘grep -c \\bibliography $(DOC).tex‘ -ne 0]; then \

14 bibhva $(DOC); \

15 hevea $(DOC).tex; \

16 fi

17 hevea $(DOC).tex

18 hacha -o index.html $(DOC).html

19 rm $(DOC).html

20 tclsh scripts/remove_pseudo_toc.tcl index.html

21 tclsh scripts/insert_html_header_and_footer.tcl \

22 -header html-header.txt \

23 -footer html-footer.txt \

24 $(HTML_FILES)

25 cat canthology.css >> $(DOC).css

26 -tidy -config tidy.conf -m $(HTML_FILES)

27

28 install:

29 mkdir -p $(INSTALL_DIR)

30 -chmod 775 $(INSTALL_DIR)

31 cp $(HTML_FILES) $(INSTALL_DIR)

32 cp $(DOC).css $(INSTALL_DIR)

33 -cp -f $(GRAPHIC_FILES) $(INSTALL_DIR)

34

35 clean:

36 rm -f *.aux *.log *.toc *.out *.dvi $(DOC).pdf *.blg

37 rm -f *.haux *.htoc *.hbbl $(HTML_FILES) $(DOC).css

38 rm -f $(DOC)[0-9][0-9][0-9].gif $(DOC)[0-9][0-9][0-9].png

39 rm -f contents_motif.gif next_motif.gif previous_motif.gif

40 rm -f $(DOC).image.tex

132 Chapter 11. Using HEVEA with Canthology

get, while running "make clean" executes the commands associated with
the clean target. The first target that appears in a Makefile is the default
target. Thus, in Figure 11.4, the default target is html, so running "make"

is equivalent to running "make html".
If a command is too long to fit on one line, then \ can be used as a line

continuation character. For example, \ is used to merge lines 10–12 into
one long command.

11.4.2 Variables Used in the Makefile

The Makefile in Figure 11.4 on the previous page defines four variables
(lines 1–4) whose values are placeholder strings that will be replaced
by real values when Canthology is run. The (ROOT_FILE_BASE_NAME)

placeholder will be replaced by the value of root_file.base_name in the
Canthology configuration file. Values for the other placeholder strings
are specified in the substitutions.search_replace_pairs configura-
tion variable, as can be seen in lines 29–31 of Figure 11.2 on page 128
and in line 13 of Figure 11.3 on page 129.

11.4.3 The html Target

The definition of the html target (line 8–26 in Figure 11.4 on the previous
page) is long, but straightforward. It first runs hevea on the root ".tex"
file (line 9). Then, it checks for a particular file whose existence indicates
that imagen needs to be run (lines 10–12). Next (lines 13–16), it checks
if a \bibliography command appears in any of the ".tex" files; if so, it
runs bibhva to convert the bibliography’s contents into LATEX format, and
then runs hevea to process the newly generated LATEX. Afterwards, hevea
is run again (line 17) to resolve cross references.

At this point, the LATEX document has been converted into a monolithic
HTML page. To split that into multiple HTML pages, the hacha utility is
run (line 18) and the no-longer-needed monolithic HTML file is deleted
(line 19). Then, some Tcl scripts are run to remove the pseudo table of
contents (line 20) and insert headers and footers into each HTML page
(lines 21–24). The canthology.css file is appended to the ".css" file

11.5. Customising the HTML Pages 133

created by hevea and hacha (line 25). Finally, tidy is run to convert the
HTML pages into XHTML format (line 26).

11.4.4 The install Target

The install target copies HTML files plus supporting CSS and image
files into the directory specified by the INSTALL_DIR variable. Line 31
of Figure 11.2 on page 128 sets the default value of this variable to be
"/var/www", which is the root directory for web servers on many UNIX
machines.

11.4.5 The clean Target

The clean target uses the UNIX rm command to remove generated files.

11.5 Customising the HTML Pages

If you have a working knowledge of the syntax used in HTML and CSS,
then it is possible to customise the “look and feel” of the HTML pages
generated by Canthology. You can do this by providing your own ver-
sions of the html-header.txt, html-footer.txt and canthology.css

files, which, as I explained in Section 11.3 on page 129, are used by the
Makefile.

The default versions of html-header.txt and html-footer.txt used
by the book:html-many-pages scope is shown in Figures 11.5 and 11.6.

The html-header.txt file uses div elements to divide the HTML page
into a “banner” area follows by a “content” area (for the main content of
the page). The “banner” area is further subdivided into “bannerleft” and
‘bannerright” areas.

The html-footer.txt file closes the “content” area and adds a br ele-
ment (a line break) to provide a bottom margin, thus ensuring the end of
the page’s content is not uncomfortably close to the bottom of the window
in which it appears.

134 Chapter 11. Using HEVEA with Canthology

Figure 11.5: The html-header.txt file

<div class="banner">

<div id="bannerleft">

Change the look-and-feel with your own versions of

"html-header.txt", "html-footer.txt" and

"canthology.css".

</div>

<div id="bannerright">

title page

contents

</div>

<div class="endtwocolumntext"></div>

</div>

<div class="content">

Figure 11.6: The html-footer.txt file

</div>

The visual formatting of the div elements mentioned above is defined
in the canthology.css file. A discussion of that file is outside the scope
of this chapter, but I encourage readers to examine the file to see how the
visual formatting rules are specified.

The effect of html-header.txt and html-footer.txt is illustrated in
Figures 11.7 and 11.8, which show the start and end of a HTML page.

You might wish to replace the text in the “bannerleft” area with, say,
the logo for your website. Likewise, you might modify html-footer.txt

to add some text (perhaps contact details for your organisation) to the
bottom of HTML pages. If you do not wish to have any header or footer
contents, then you can delete all the contents of html-header.txt and
html-footer.txt, thus making them empty files.

Among other things, the canthology.css file sets a white background
for the HTML page and highlights a hypertext link when the mouse pointer
hovers over it. You can create your own version of canthology.css to im-
plement a different “look and feel” for the generated HTML pages. This
enables you to ensure that the Canthology-generated HTML pages can
blend into the overall visual style of a parent website.

11.6. Other HTML Configuration Scopes 135

Figure 11.7: The start of a HTML page

Figure 11.8: The end of the HTML page

11.6 Other HTML Configuration Scopes

The discussion so far has assumed the use of the book:html-many-pages

configuration scope. The report:html-many-pages and article:html-

many-pages scopes are almost identical—they just use a different value
for the root_file.documentclass.name configuration variable.

There is another set of configuration scopes called book:html-one-

page, report:html-one-page and article:html-one-page. They use
a slightly different setting for the copy.search_path variable, so they
look for support files in the etc/html-one-page directory instead of in
etc/html-many-pages. Because of this, they pick up different versions of
Makefile, html-header.txt and html-footer.txt.

The etc/html-one-page version of Makefile runs hevea to convert a

136 Chapter 11. Using HEVEA with Canthology

LATEX document into a single-page HTML file; it does not run hacha to
split the file into multiple HTML pages.

The etc/html-one-page version of html-header.txt does not contain
“title page” or “contents” links.

Chapter 12

Writing Documents Portable to
PDF and HTML

12.1 Introduction

The concept of portability is often applied to software applications. For
example, if an application can run on only one type of computer operat-
ing system, then the application is said not to be portable. Conversely,
if an application can run on several types of operating system (such as
Microsoft Windows, Apple Macintosh and Linux), then the application is
said to be portable to those operating systems.

The concept of portability can also be applied to documents. It is pos-
sible to write a ".tex" file that can be processed by LATEX to produce a
PDF file, but cannot be processed by HEVEA to produce HTML. And vice
versa. But, with a bit of planning and effort, it is often possible to write a
".tex" file that can be processed by LATEX to produce a PDF file, and also
can be processed by HEVEA to produce HTML. I say that such a document
is portable to both PDF and HTML.

Previous chapters have discussed several ways in which Canthology
simplifies the task of writing LATEX documents that are portable to PDF
and HTML. For example:

• Template files shield users from differences in how to format title

137

138 Chapter 12. Writing Documents Portable to PDF and HTML

pages, dedication pages, and so on, so they look good in both PDF
and HTML formats.

• Canthology provides ".sty" and ".hva" implementations of several
packages.

• Configuration scopes in etc/defaults.cfg shield users from signif-
icant differences in the shell commands used to convert ".tex" files
into PDF or HTML files.

In this chapter, I start by discussing some additional LATEX commands,
defined in the canthology package, that help to increase the portability of
documents.

Although Canthology protects users from several portability obstacles,
it is impossible for Canthology to provide protection from every portabil-
ity obstacle. For this reason, I finish this chapter by offering some advice
on what you can do when you encounter a portability obstacle that is not
by Canthology.

12.2 How to Define Labels in a Portable Way

Books about LATEX typically show the \label command (Section 9.10.1
on page 99) being used immediately after one of the following commands:
\part, \chapter, \section, \subsection, \subsubsection, \paragraph,
\subparagraph or \caption. When you convert your ".tex" document
into a PDF file, the label is associated with the preceding command.

Unfortunately, HEVEA works slightly differently. When it converts your
".tex" document into HTML, the label is associated with whatever text
follows it. To understand this distinction, consider the following:

\chapter{How it All Started}

\label{ch:started}

Once upon a time ...

Let’s assume another part of the document provides a cross reference to
the ch:started label, and that a reader viewing the document on a com-

12.2. How to Define Labels in a Portable Way 139

puter screen clicks on that cross reference. If the document is in PDF for-
mat, then the PDF document viewer will jump to the chapter title, which
is what we want. However, if the document is in HTML format, then the
web browser will jump to the first line of text after the chapter title (that is,
Once upon a time. . .) and the chapter’s title will be invisible, just above
the top of the browser’s window, which is not what we want. This problem
affects not just the \chapter command, but all commands after which you
might place a \label command.

The HEVEA manual [6] recommends a workaround for this problem:
place the \label command inside the parameter to the \chapter com-
mand. Using this workaround, the example would be rewritten as fol-
lows:

\chapter{\label{ch:started}How it All Started}

Once upon a time ...

That workaround results in cross references in the HTML version of a
document working as they do in the PDF version of a document. However,
this workaround is not without problems.

One obvious problem is that placing the \label command inside the
\chapter command decreases readability of the ".tex" file.

Another potential drawback is that I don’t think LATEX was designed
with the expectation that a \label command would be placed inside a
\chapter command, so this works by accident rather than by design.
As such, it is possible that future modifications to LATEX may cause this
workaround to stop working.

Ideally, we want the \label command to appear after the \chapter

command when using LATEX, but to appear inside the \chapter command
when using HEVEA. The canthology package facilitates this by defining a
command called \lchapter (short for “labelled chapter”) that takes two
parameters: a chapter title and its label. The ".sty" (that is, LATEX) imple-
mentation of the canthology package defines this command as follows:

\newcommand{\lchapter}[2]{\chapter{#1}\label{#2}}

As you can see, that definition places the \label command after the
\chapter command. In contrast, the ".hva" (that is, HEVEA) implemen-

140 Chapter 12. Writing Documents Portable to PDF and HTML

tation of the canthology package defines the command so that the \label

command is inside the \chapter command:

\newcommand{\lchapter}[2]{\chapter{\label{#2}#1}}

We can use \lchapter to rewrite the start-of-a-chapter example in a more
portable way:

\lchapter{How it All Started}{ch:started}

Once upon a time...

The canthology package defines \lpart, \lsection, \lsubsection,
\lsubsubsection, \lparagraph, \lsubparagraph and \lcaption in a
similar way to \lchapter.

12.3 Avoid Using the \pageref Command

Consider the following sentence:

I discuss this in greater detail in

Section~\ref{sect:something} on

page~\pageref{sect:something}.

If you convert your document into PDF, then the above sentence may ap-
pear as:

I discuss this in greater detail in Section 2.6 on page 19.

However, if you convert your document into HTML, then two question
marks will be used for the page number:

I discuss this in greater detail in Section 2.6 on page ??.

This happens because the concept of page numbers does not make sense
in HTML. Thus, HEVEA implements the \pageref command to print two
question marks in the hope that a proofreader will notice the problem in
the generated HTML.

Thankfully, there is a simple technique that enables us to use \pageref

when creating PDF documents and to avoid using it when creating HTML

12.3. Avoid Using the \pageref Command 141

documents. This technique is to use \newcommand to define higher-level
commands for typesetting cross references. The definition of these higher-
level commands in the ".sty" implementation of a package can use the
\pageref command, while the definition of the commands in the ".hva"

implementation of a package avoids using the \pageref command.
In Section 9.10.2 on page 102, I discussed shorthand commands such

as \xsp and \xs for typesetting a cross reference to a section, with and
without stating its page number. The definition of these commands in the
".sty" implementation of a package might be as follows:

\newcommand{\xs}[1]{Section~\ref{#1}}

\newcommand{\xsp}[1]{Section~\ref{#1} on

page~\pageref{#1}}

Their definitions in the ".hva" implementation of the same package might
be:

\newcommand{\xs}[1]{Section~\ref{#1}}

\newcommand{\xsp}[1]{Section~\ref{#1}}

Using those definitions, the example sentence used earlier can be written
(more compactly) as follows:

I discuss this in greater detail in \xsp{sect:something}.

That will be typeset in a PDF document as follows:

I discuss this in greater detail in Section 2.6 on page 19.

and will be typeset in a HTML document as follows:

I discuss this in greater detail in Section 2.6.

The ".sty" implementation of the canthology package defines the
\xpp, \xap, \xcp, \xsp, \xfp and \xtp commands to make use of page
numbers (via the \vref command of the varioref package). The ".hva"

implementation of the canthology package defines those commands to
not attempt to use page numbers.

142 Chapter 12. Writing Documents Portable to PDF and HTML

12.4 The \ifthenelse Command

Among other things, the ifthen package [2] defines an \ifthenelse com-
mand that takes three parameters:

\ifthenelse{condition}{then-part}{else-part}

The \ifthenelse command evaluates the condition parameter. If this
evaluates to true, then the text or statements in the then-part parameter
are processed. Otherwise, the text or statements in the else-part param-
eter are processed.

The hevea package [6] defines a boolean variable called hevea. This
variable is given the value true when a document is processed by the hevea
command, but is given the value false when a document is processed by a
LATEX-related command such as latex or pdflatex.

The combination of the \ifthenelse command and the hevea boolean
variable makes it possible to tailor the appearance or contents of a docu-
ment for the output format (HTML or PDF). For example, an outline of
the "titlepage-template-*.tex" files (Section 7.4 on page 48) is shown
below:

\ifthenelse{\boolean{hevea}}{

... % Typeset the title page for HTML format

}{

... % Typeset the title page for PDF format

}

In this way, a book can have its title page typeset one way in the PDF
format of the book, and typeset another way in the HTML format.

You are likely to need to use the \ifthenelse command only rarely.
However, for some niche tasks, such as typesetting the title page of a doc-
ument, it can be invaluable.

12.5 Placement of Captions

A caption is a brief description that accompanies, for example, a photo-
graph in a book or article. In some books, a caption appears above a figure.

12.5. Placement of Captions 143

You can see an example of this in Figure 12.1.

Figure 12.1: A caption above a figure

In some other books, a caption appears below a figure. You can see an
example of this is shown in Figure 12.2.

Figure 12.2: A caption below a figure

When a document is printed on paper, it is a subjective issue whether
a caption looks better above or below a figure. However, if a document
might be read on a computer screen, then it is better to put the caption
above a figure. To understand why, let’s assume you are reading a docu-
ment on a computer screen, and you click on a cross reference to a figure.
The view on the screen may change to show the figure’s caption (that is,
the linked-to text) at the very top of the screen.

• If the caption is above the figure, then you will be able to see the
figure on the screen.

• If the caption is below the figure, then (because the caption is at the
top of the screen) the figure will be above the top of the screen and
hence will be invisible. In such a case, you will have to scroll the
document to be able to see the future.

144 Chapter 12. Writing Documents Portable to PDF and HTML

Readers who have viewed HTML pages in a web browser should easily
be able to visualise the issue I have described above. However, some
readers may assume the issue does not apply to PDF documents because
the PDF viewer they use shows an entire page of a document at a time.
However, many PDF viewers have a menu option that enables you to view
a document in one continuous (and scrollable) stream rather than a single
page at a time. If a PDF viewer is in “continuous” viewing mode, then the
issue I have described above will apply.

12.6 Dealing with Other Portability Problems

Sooner or later, you are likely to encounter a portability obstacle that is
not handled by Canthology. Typically, you will notice that a particular
command is processed one way by LATEX, but processed a different way
by HEVEA. Your instinct might be to wonder:

How can I make this command work the same way in HEVEA as
it does in LATEX?

However, it is often more productive to ask a different question:

That command (perhaps when combined with other commands)
produces the desired result with LATEX but, unfortunately, not
with HEVEA. Might a different command (or sequence of com-
mands) produce the desired result (or at least an acceptable re-
sult) with HEVEA?

If you can find such an alternative command (or sequence of commands),
then that makes it possible to overcome the portability obstacle with the
following:

1. Create a new package, let’s call it example. Doing this is straightfor-
ward. Section 9.5 on page 85 discusses how to create example.sty

for use with LATEX; and Section 10.6 on page 113 discusses how
to create a corresponding ".hva" version of a package for use with
HEVEA.

12.6. Dealing with Other Portability Problems 145

2. In example.sty, use \newcommand to define a command that achieves
what you want in a way that is compatible with LATEX.

3. In example.hva, use \newcommand to define an identically-named
command that achieves what you want in a way that is compatible
with HEVEA.

4. Now add the example package to the list of package names used by
your document.

As an example, recall from Section 12.2 on page 138 that placing a \label
command after a \chapter command does what we want in LATEX, but not
in HEVEA. The way Canthology works around this portability problem is to
implement a new command called \lchapter one way in canthology.sty

and a different way in canthology.hva.
In fact, this approach is the primary tactic that Canthology uses to

encapsulate portability obstacles. The canthology package defines over
30 commands, most of which are defined one way in canthology.sty and
a different way in canthology.hva.

Part V

Information for Maintainers

146

Introduction to Part V

The two chapters in Part V provide information that may be of use to peo-
ple who want to do maintenance work on Canthology, whether by fixing
bugs in existing functionality, or by adding new functionality.

Chapter 13 provides an overview of Canthology’s architecture. Can-
thology is a small application, and this is reflected in the conciseness of
this chapter.

There are many ways in which Canthology might be improved if people
have the time or skills to do so. Chapter 14 outlines some of those ways.

147

Chapter 13

Architecture of Canthology

13.1 Introduction

This chapter is aimed at people who want to modify Canthology, for ex-
ample, to fix a bug or extend its functionality. To be able to modify Can-
thology, you will first need to be familiar with its architecture. Explaining
that architecture is the focus of this chapter.

Canthology is comprised of three interacting parts: (1) a Java-based
application; (2) supporting files; and (3) the defaults.cfg file, which
(among other things) configures Canthology to use the subset of support-
ing files appropriate for the chosen output format (PDF or HTML).

I have already discussed the defaults.cfg file in Chapters 8 and 11,
so this chapter focusses on the Java-based application and supporting files.

13.2 The Java Application

The anthology application contains approximately 1200 lines of Java
code (excluding comments and blank lines). Some readers may consider
this to be surprisingly concise, considering the functionality provided by
the application. This conciseness is due to a combination of two issues.

First, some of Canthology’s functionality is not implemented in Java
code, but rather is provided by support files, as I will discuss in Sec-

148

13.2. The Java Application 149

tion 13.3.
Second, and more significantly, the parsing and semantic checking of

the configuration file is performed by a separate library (which contains
over 8000 lines of code). Thus, Canthology gains the rich functionality of
that configuration-file parser “for free”.

The configuration parser library is called Config4J; this is the Java im-
plementation of Config4* (pronounced “config for star”). If you want to
modify Canthology, then it is useful to first gain an overview of the API of
Config4J. You can find such an overview in the Chapter 3 of the Config4*
Getting Started Guide, which is available on the Config4* website.1

13.2.1 Packages and Source-code Files

The Java source code of the canthology application resides in a package
called org.canthology.canthology. The repetition of “canthology” in
the package name might appear redundant to some readers. However, it is
there to make it easy to create future utility applications that will comple-
ment Canthology. For example, if a future version of Canthology provides
utility applications called foo and bar, then the package hierarchy might
be as follows:

org.canthology.canthology (source code of canthology)
org.canthology.foo (source code of foo)
org.canthology.bar (source code of bar)

13.2.2 Limited Use of Java Language Features

During my career as a software consultant, I have worked with numerous
companies and have noticed that although some companies are quick to
upgrade to new versions of development tools, other companies are much
slower to do so. It is not unusual for a company to be using a compiler that
is five or even ten years old. For this reason, when I develop open-source
software, I like to avoid use of relatively new features in a programming
language. This approach has the drawback that the source code of my

1www.config4star.org

150 Chapter 13. Architecture of Canthology

applications may be slightly more verbose than necessary, but it offers the
benefit that my applications can be compiled and used by a wide range of
companies and individuals, regardless of whether they use new or older
compilers.

In practice, I try to limit myself to features available in Java 1.3. One
consequence of this is that I avoid using the Java assert statement (it was
introduced in Java 1.4). Instead, I have written an assertion() method
that serves a similar purpose.

Another consequence of restricting myself to language features avail-
able in Java 1.3 is that I avoid use of generics (they were introduced in
Java 5). This results in verbosity when retrieving items from a collection,
due to the need for typecasts.

13.2.3 Algorithms and Source-code Files

The source code of the canthology application consists of the following
five files:

Util.java

AssertionError.java

Canthology.java

StartingPointConfig.java (generated from StartingPointConfig.cfg)

DocumentInfo.java

I will now discuss each of those briefly.

Util.java and AssertionError.java

The Util class defines some static utility methods. One of these is
Util.assertion(), which, as I already discussed, I use instead of the
Java assert statement. This method throws an AssertionError if the
assertion check fails.

Canthology.java

The Canthology class defines the main() method for the canthology

application. The code in this class is straightforward. First, it parses

13.2. The Java Application 151

command-line arguments. If a -create command-line option is encoun-
tered, then it generates a starting-point configuration file and terminates.
Otherwise, it creates an empty Configuration object (this type is de-
fined by the Config4J library), populates it with name=value pairs ob-
tained from "-set name value" command-line options, and then parses
the configuration file. Finally, for each configuration scope that defines
a document, it creates a DocumentInfo object (whose constructor vali-
dates the configuration information within a configuration scope) and calls
DocumentInfo.process() to perform the “real work” of Canthology.

StartingPointConfig.cfg

A simple, but tedious, way to create a starting-point configuration file is
to open the file for writing, use lots of print statements to generate the
contents of the file, and then close the file. The problem with this tech-
nique is that writing the print statements is tedious and error-prone. Con-
fig4J alleviates this tedious work as follows. The config2j utility (doc-
umented in Chapter 6 of the Config4* Getting Started Guide) can read
a text file and generate a Java class that provides the contents of the file
as an embedded string (accessible through a getString() method). The
build system uses config2j to convert StartingPointConfig.cfg into
StartingPointConfig.java, and that generated file is compiled into the
application. Thus, the application code to create a starting-point configu-
ration file becomes trivial:

out = new FileWriter(cfgFileName);

out.write(StartingPointConfig.getString());

out.close();

If you want canthology to generate a starting-point configuration file with
different contents, then you should modify StartingPointConfig.cfg,
and run ant to rebuild the application.

DocumentInfo.java

The DocumentInfo class performs the “real work” of Canthology. Its pub-
lic API consists of a constructor and the process() method.

152 Chapter 13. Architecture of Canthology

The constructor creates a schema that specifies what contents are al-
lowed in a document scope, and uses the SchemaValidator class (pro-
vided by the Config4J library) to validate the document scope against this
schema. Finally, the constructor copies configuration variables into in-
stance variables for more convenient access when the process() method
is invoked.

The process() method uses configuration information to perform the
following steps:

• Create a root ".tex" file in the working directory. Search this file for
commands such as \input that specify the names of other required
files, and copy those files into the working directory. Those copied
files are recursively searched for commands such as \input.

• Files listed in the copy.extra_files_to_copy configuration vari-
able are copied into the working directory. These copied files are
recursively searched for commands such as \input to find other files
that need to be copied.

• When the root ".tex" file is being created, and when other files are
being copied, the substitutions.search_replace_pairs configu-
ration variable is used to perform a global search-and-replace on the
files’ contents.

• Finally, each command listed in the build_commands configuration
variable is executed.

The above steps are straightforward. The only complication is that some
steps in the algorithm are inherently recursive.

13.3 Support Files

Support files used by Canthology are stored in the following subdirectories
of a Canthology installation:

etc/latex

etc/html-common

13.3. Support Files 153

etc/html-many-pages

etc/html-one-page

I now discuss each of these briefly.

13.3.1 The etc/latex Subdirectory

The etc/latex directory contains some ".sty" files (that is, packages)
plus some ".tex" files. The ".sty" files are:

canthology.sty

hevea.sty

hevea-fix.sty

The canthology package defines commands such as \chapterAuthorInfo
for specifying information about the author of a contribution in an anthol-
ogy, and \thisPageBackgroundColor for specifying a background colour
to be used on, say, the title page of a document. Appendix A provides a
complete list of the commands defined in the canthology package.

The hevea package defines dummy versions of HEVEA commands, so
a ".tex" document that makes use of those commands can be processed
by either LATEX or HEVEA. The hevea package is distributed as part of the
HEVEA distribution. However, a copy of hevea.sty is also distributed with
Canthology. Doing this enables Canthology to provide an out-of-the-box
integration with HEVEA without having to worry about whether HEVEA is
installed.

As I discussed in Section 10.10.1 on page 121, I wrote hevea-fix.hva

to overcome some misfeatures of HEVEA. The hevea-fix.sty file is a
dummy version of the package for compatibility with LATEX.

The ".tex" files in the directory are as follows:

titlepage-template-1.tex

titlepage-template-2.tex

titlepage-template-3.tex

titlepage-hevea-template.tex

example-copyright-template.tex

copyright-GNU-FDL-1.3.tex

154 Chapter 13. Architecture of Canthology

copyright-GPL-2.0.tex

copyright-GPL-3.0.tex

copyright-LPPL-1-3c.tex

dedication-template.tex

example-praise-template.tex

The files with names of the form "titlepage-template-*.tex" provide
various layouts for the title page of a book. These are called template files
because they contain placeholder text that can be replaced with text spec-
ified in the substitutions.search_replace_pairs configuration vari-
able.

You can see an example of a template file in Figure 13.1 on the next
page, which shows the contents of the titlepage-template-1.tex file.
For ease of reference, placeholder text is shown in a bold font.

The title page of a document is often typeset with commands that
specify rules and vertical spaces. Such commands work fine for a page
of fixed dimensions, but often do not make sense for a HTML docu-
ment. For this reason, it is useful to typeset the title page one way if
the document is being processed with LATEX, but typeset the title page
another way if the document is being processed with HEVEA. This is the
reason for the if-then-else statement on line 1 of Figure 13.1. If HEVEA
is being used, then the simpler, HTML-friendly formatting commands in
titlepage-hevea-template.tex are used.

The example-copyright-template.tex file provides example text for
several copyright licenses. The intention is that the editor of an anthology
will make a local copy of this file and edit its contents to suit his or her
needs.

One of the example paragraphs in example-copyright-template.tex

is for version 1.3 of the GNU Free Documentation License (FDL). If the
editor of an anthology wishes to use this license, then it is a legal re-
quirement to provide the full text of the FDL as, say, an appendix in the
document. The copyright-GNU-FDL-1.3.tex file provides the full text of
that license and can be used for that purpose. For a similar reason, the
copyright-GPL-2.0.tex and copyright-GPL-3.0.tex files provide the
full text of versions 2 and 3 of the Gnu General Public License (GPL),

13.3. Support Files 155

Figure 13.1: The titlepage-template-1.tex file
1 \ifthenelse{\boolean{hevea}}{

2 %--------

3 % Hevea version

4 %--------

5 \input{titlepage-hevea-template.tex}

6 }{

7 %--------

8 % LaTeX version

9 %--------

10 \thispagestyle{empty}

11 \begin{center}

12 \vspace*{0.2\textheight}

13

14 \Huge \textbf{(TITLE-PLACEHOLDER)}

15

16 \ifthenelse{\equal{}{(SUBTITLE-PLACEHOLDER)}}{}{

17 \vspace{1cm}

18 \Large \textbf{(SUBTITLE-PLACEHOLDER)}

19 }

20

21 \vspace{1cm}

22 \Large \textbf{(AUTHOR-PLACEHOLDER)}

23 \end{center}

24

25 \vfill

26

27 \noindent

28 {\large (DESCRIPTION-PLACEHOLDER)}

29

30 \ifthenelse{\equal{}{(PUBLISHER-PLACEHOLDER)}}{}{

31 \noindent\rule{\textwidth}{0.2mm}\\

32 \noindent{\rule{0mm}{1.1em}(PUBLISHER-PLACEHOLDER)}

33 }

34 \newpage

35 }

and copyright-LPPL-1-3c.tex provides the full text of the LATEX Project
Public License.

The dedication-template.tex file can be used to typeset a dedica-
tions page near the start of a book.

156 Chapter 13. Architecture of Canthology

The example-praise-template.tex file provides examples of how to
use the \praise command to typeset a page of praise for a book.

13.3.2 The etc/html-* Subdirectories

Support files used with HEVEA are spread across the following subdirecto-
ries:

etc/html-common

etc/html-many-pages

etc/html-one-page

The html-common directory contains the ".hva" implementations of
several packages, including: canthology, framed, hevea-fix and verse.
This directory also contains: canthology.css, which is used for cus-
tomising the look-and-feel of generated web pages; tidy.conf, which is
used to configure the tidy program when converting generated HTML
files into XHTML format; and some Tcl scripts that were discussed in
Section 11.3 on page 129.

The html-one-page directory contains a Makefile that runs hevea to
create a single-page HTML document. This directory also contains sup-
porting html-header.txt and html-footer.txt files suitable for use in a
single-page HTML document.

The html-many-pages directory contains a Makefile that runs hevea

to create a single-page HTML document, and then runs hacha to split
it into multiple HTML pages. This directory also contains supporting
html-header.txt and html-footer.txt files suitable for use in a multi-
page HTML document.

13.4 How Canthology Searches for Support Files

The copy.search_path configuration variable specifies which directories
will be searched to find supporting files.

Different scopes in the etc/defaults.cfg file define different values
for the copy.search_path variable. For example, scopes used to generate
PDF files set copy.search_path as follows:

13.4. How Canthology Searches for Support Files 157

copy.search_path = [

".",

getenv("CANTHOLOGY_HOME") "/etc/latex",

];

In contrast, scopes used to generate a single-page HTML document set
copy.search_path as follows:

copy.search_path = [

".",

getenv("CANTHOLOGY_HOME") + "/etc/html-one-page",

getenv("CANTHOLOGY_HOME") + "/etc/html-common",

getenv("CANTHOLOGY_HOME") + "/etc/latex",

];

Scopes that generate a multi-page HTML document use the following set-
ting for copy.search_path:

copy.search_path = [

".",

getenv("CANTHOLOGY_HOME") + "/etc/html-many-pages",

getenv("CANTHOLOGY_HOME") + "/etc/html-common",

getenv("CANTHOLOGY_HOME") + "/etc/latex",

];

Chapter 14

Suggestions for Future Work

14.1 Introduction

In this chapter, I discuss several ways in which Canthology might be im-
proved. If you have the time and skills to make any of these improvements,
then please do so.

14.2 A Wider Selection of Title-page Templates

As discussed in Section 7.4 on page 48, Canthology provides three tem-
plate files that make it easy to create the title page of a book. It would be
nice to provide a more extensive range of template title pages with future
versions of Canthology. If you would like to contribute to this, then you
might find some inspiration from Peter Wilson’s extensive collection of
title pages [13].

Also, I do not claim to be especially gifted at designing title pages,
even when borrowing ideas from Peter Wilson’s document. If you feel the
existing title pages can be tweaked to improve their layout, then please do
so.

158

14.3. Background Graphics for Title Pages 159

14.3 Background Graphics for Title Pages

I like having a white background for the title pages of books and manuals
that I write. However, many people prefer a title page to have a colourful
background picture. For this reason, it might be nice to ship a collection of
high-resolution, royalty-free pictures with Canthology that people could
use on the title page of documents.

Having said that, I would not like a distribution of Canthology to con-
sist of, say, 1 MB of software, a few more MB of manuals and 400 MB
of high-resolution pictures. Perhaps a better idea would be to have a
small distribution of Canthology containing just a few sample pictures
(so users can play with the \thisPageBackgroundImage command), and a
separate website that users can browse to access a large collection of pic-
tures. I know such websites already exist, but they are filled mostly with
landscape-oriented images, while book covers require portrait-oriented
images.

14.4 A Blog-to-LATEX Converter

Consider the following scenario. Fred has a popular blog, and has been
posting articles to it for on a regular basis for several years. He would
like to create a “best of” collection of his blog articles, and publish it in
book format. He decides Canthology would be a good tool to help him
do this. Unfortunately, his blog articles are written using one markup
language, while Canthology uses a different markup language (LATEX), so
he has to do the tedious work of converting blog postings from one markup
language to another.

A useful addition to Canthology would be a utility that can convert
documents from various blog markup formats into LATEX format.

14.5 Improve the Quality of Generated HTML

Unfortunately, the HTML generated by HEVEA is not 100% compliant with
standards. The Canthology Makefile that runs hevea and hacha tries to

160 Chapter 14. Suggestions for Future Work

improve the quality of the generated HTML by passing it through the tidy
utility. However, there is still room for improvement. Thus, one way
to improve Canthology is to improve HEVEA so it generates better-quality
HTML.

14.6 Installers for Various Operating Systems

Installing Canthology is a simple, albeit multi-step, process, which can be
described as, “unzip the distribution and set a few environment variables”.
It would be nice to have platform-specific installers that turn the multi-step
process into a single-step process.

14.7 Generate ebooks

Canthology can generate books in PDF and HTML formats. Would it be
possible for Canthology to also generate books in popular ebook formats?
I spent a few weeks investigating this possibility and discovered that it
presents some challenges.

14.7.1 Different ebook File Formats

There are approximately 20 different ebook file formats.1 In some of the
popular formats, an ebook is represented as an archive, such as a ZIP file,
that holds the following: (1) XML or HTML files that contain the main
text of the book; (2) a ".css" file that defines the visual layout of the
text; (3) image files for diagrams and pictures used within the book; and
(4) metadata to specify information—such as the title, author and pub-
lisher of the book—and impose an organisational structure upon the col-
lection of files in the archive.

I suspect the wide variety of ebook formats is due mainly to each man-
ufacturer of ebook readers wanting to create a proprietary file format for
its devices, in the hope of gaining a monopoly on the market for ebooks.

1http://en.wikipedia.org/wiki/Comparison_of_e-book_formats

14.7. Generate ebooks 161

However, as a back-up plan (in case a monopoly is not achieved), ebook
readers tend to support a few open or competing file formats too. The re-
sult is that almost all ebook readers can be used to view books in the EPUB
format. The most notable exception to this is the Amazon Kindle, which
does not support EPUB. However, the Kindle supports the Mobipocket
file format, which is supported on some other ebook readers too. Thus,
if you want to make a book viewable on all ebook readers, a pragmatic
approach is to produce EPUB and Mobipocket versions of your book, and
ignore all the other ebook file formats.

14.7.2 Using HEVEA and Calibre

Calibre2 is an open-source application for managing collections of ebooks.
Calibre provides the ability to convert an HTML document into any of
many ebook formats, including EPUB and Mobipocket. This raises the
possibility of using HEVEA to convert a LATEX document into HTML format,
and then using Calibre to convert that into an ebook format.

I briefly experimented with this approach. Unfortunately, I was not
very happy with the results it produced. Most of the text in my sam-
ple document was displayed appropriately in the ebook reader application
provided by Calibre. However, the formatting of some text, such as po-
ems, was messed up badly. Initially, I thought there might be a bug in
Calibre, but when I started to investigate what might have gone wrong, I
learned that both the EPUB and Mobipocket formats support only a sub-
set of HTML and CSS. Perhaps the HTML generated by HEVEA did not
fall into that supported subset, so Calibre had to modify the HTML when
converting it into an ebook format, and these modifications resulted in
the ebook version of my sample document displaying in a way I had not
intended.

14.7.3 Tailoring HEVEA to better Support the Generation of ebooks

Perhaps it would be possible to write two sets of ".hva" files for HEVEA.
One set would instruct HEVEA to generate HTML that takes advantage

2http://calibre-ebook.com/

162 Chapter 14. Suggestions for Future Work

of all the capabilities of the HTML standard and displays nicely in web
browsers. The other set would instruct HEVEA to generate only the subset
of HTML elements and tags that are supported in EPUB and Mobipocket.

The two sets of ".hva" files would reside in different directories, and
the "-I directory" command-line option could instruct HEVEA to look
for ".hva" files in one of those directories. For example, if the two di-
rectories are called browser-support-files and ebook-support-files,
then executing the command:

hevea -I browser-support-files my-document.tex

would produce HTML suitable for viewing in a web browser. In contrast,
executing the command:

hevea -I ebook-support-files my-document.tex

would produce HTML suitable for converting into an ebook format via
Calibre.

14.7.4 Playing with HEVEA and Calibre

If you want to experiment with using HEVEA and Calibre to convert LATEX
documents into ebooks, then the following information might help you to
get started.

Before using Calibre, you should convert your LATEX document into a
single-page HTML document. You can do this by editing Canthology.cfg

and ensuring the @copyFrom statement copies from the book:html-one-

page scope. Afterwards, run canthology.
The web page below contains documentation on the ebook-convert

command (provided as part of Calibre):

http://manual.calibre-ebook.com/cli/ebook-convert.html

Within that page, you should scroll down to the “HTML Input” list item,
and then click on one of the sub-items, such as “HTML Input to EPUB
Output”. Doing that will lead you to documentation on the command-line
options for performing the desired conversion.

14.7. Generate ebooks 163

If you want to convert a file called my-anthology.html into EPUB
format, then the following example illustrates how you might do that (\
denotes a line continuation):

ebook-convert my-anthology.html my-anthology.epub \

--chapter "//*[name()=’h1’]" \

--page-breaks-before "//h:h1" \

--no-default-epub-cover \

--chapter-mark none \

--authors "Example Name" \

--publisher "Example Company"

You will probably want to play with different command-line options to
see what effect they have.

14.7.5 Small Screen Sizes of ebook Readers

Support for a limited subset of HTML and CSS is not the only challenge
when creating an ebook. Another challenge is the small displays of most
ebook readers. For example, the diagonal screen size of the Amazon Kin-
dle is is just 6 inches (15 cm). That is slightly smaller than a postcard.

The small screen size of an ebook reader is acceptable for reading a
novel, because most novels contain minimal formatting. However, the
small screen size is likely to cause problems for technical books, because
they often have more ambitious formatting requirements. For example,
Figure 11.4 on page 131 is a listing of a Makefile. The longest line in that
listing is almost 70 characters across, which is too wide to display in its
entirety on the screen of most ebook readers (unless you reduce the font
size to something that is uncomfortably small to read). Likewise, some
technical books contain tables of data that are too big for viewing on an
ebook reader.

Perhaps a good rule of thumb is to consider creating ebook versions
of novels, but to avoid trying to create ebook versions of product manuals
and other technical documentation.

164 Chapter 14. Suggestions for Future Work

14.8 Providing Customisable Anthologies as Demos

One particular benefit of Canthology is its ability to easily customise an
anthology. This benefit would be more readily apparent if Canthology was
shipped with some book-length demos that are useful in their own right.

For example, Shakespeare’s poems are old enough to be out of copy-
right, and they can be downloaded (legally) from numerous websites.
Let’s assume one person took the time to download all those poems, save
each poem in a separate ".tex" file, and typeset them with LATEX com-
mands. Such a task might be completed in, say, a weekend. Then, a
Canthology.cfg file could be written to provide a title page and table
of contents, and have an \input command for each poem. The result,
obviously, would be a complete anthology of Shakespeare’s poems. How-
ever, the result would be something else too: a customisable anthology of
Shakespeare’s poems. This customisability would offer benefits:

• Somebody who likes just a subset of the poems could easily delete
(or comment out) \input commands for the disliked poems, and then
rerun canthology to obtain an anthology of their favourite poems.

• A student who is studying a handful of Shakespearian poems for
a course could trivially compile a very short anthology of just the
poems on the course.

Of course, a limitation of such an anthology would be that, by default,
it would not contain any critiques of the poems because such critiques tend
to be new enough to still be in copyright. However, there would be nothing
preventing budding literature geeks from writing their own critiques and
contributing them to the anthology.

Customisable anthologies could be useful in other fields too. For ex-
ample, food lovers might use Canthology to compile a large collection of
recipes. The idea of yet another recipe book is not very exciting. But what
is exciting is distributing the recipes in Canthology format, so people can
edit the configuration file to create a personalised book that contains only
the recipes they like.

14.9. Configuration Support for Additional LATEX Tools 165

14.9 Configuration Support for Additional LATEX Tools

Currently, the etc/defaults.cfg file shipped with Canthology assumes
people will use pdflatex to convert LATEX documents into a printable for-
mat. However, not everybody uses pdflatex. Some people prefer to use
latex to produce a ".dvi" file, and then use a post-processing tool to
convert that file into a printable format, such as PDF or PostScript. Other
people prefer to use luatex or xelatex. Likewise, not everyone uses
HEVEA to generate HTML documents. Some people prefer to use another
tool, such as TTH, LATEX2HTML, TEX4ht, or LATEXML.

The choice of a LATEX tool affects not only the build_commands config-
uration variable. It can also affect optional arguments passed to packages,
and set-up commands used in the preamble of a document.

It would be nice to see Canthology extended to provide out-of-the-
box configuration support for tools other than pdflatex and HEVEA. One
way to do this would be to extend etc/defaults.cfg to contain scopes
for each tool. However, doing that might result in the file growing too
large to be easily maintained. Another approach would be to provide a
separate configuration file for each tool. For example: etc/pdflatex.cfg
could provide configuration support for pdflatex; etc/hevea.cfg could
provide configuration support for HEVEA; etc/luatex.cfg could provide
configuration support for luatex; and so on. Presumably, configuration
settings that are common to many tools could be factored out into, say,
etc/common.cfg and a tool-specific configuration file would access those
settings via an @include statement.

14.10 Add Windows Support for Generating HTML

In Section 10.4 on page 111, I explained why the use of Canthology with
HEVEA (to produce HTML files) is not supported on Windows. Overcom-
ing this restriction would require several pieces of work to be carried out.

First, somebody would have to enhance the Windows port of HEVEA to
contain ports of the UNIX utilities required to run imagen.

Second, Canthology uses a Makefile to execute the sequence of com-

166 Chapter 14. Suggestions for Future Work

mands required to generate HTML output. A Windows-compatible re-
placement (perhaps a ".bat" file) would need to be written.

Finally, most of Canthology is written in Java, but Canthology also
contains some simple Tcl scripts. Ideally, we should write Java replace-
ments for those Tcl scripts. Doing this would eliminate the requirement
to have Tcl installed on a computer, which would make it easier to run
Canthology on a Windows-based PC.

14.11 A Graphical User Interface

Canthology is simple to use—at least for people who are comfortable ex-
ecuting commands from a command-line prompt. But, of course, many
people do not know how to execute commands in a UNIX shell or a Win-
dows command window. Such people would find Canthology much easier
to use if there was a graphical user interface (GUI) “wrapper” for it.

14.12 A Web Interface

Consider the following scenario. Fred has no Canthology-related software
installed on his computer. He briefly looks through this Canthology man-
ual, thinks Canthology might be useful, and decides to try it. But to do so,
he first has to install the following software:

• Canthology. The distribution is only a few MB large, so that is not a
problem.

• A Java runtime. The distribution is about 20 MB. That is acceptable.

• Tcl. One popular distribution is about 27 MB. That is acceptable.

• A distribution of LATEX. The distribution usually recommended for
Windows (www.tug.org/protext) is about 1.1 GB, while that for Mac
OS X (www.tug.org/mactex) is about 1.6 GB.

Having to install more than one GB of software might be enough to
dissuade Fred from trying Canthology. But, if Canthology was installed

14.12. A Web Interface 167

on a website and he needed only a web browser to use it, then Fred could
try Canthology without having to install it. Fred could write some ".tex"

files and upload them to the website. An application on the website could
help him create a configuration file. Then, when he clicks on a “create
document” button, the web server would run canthology on his config-
uration file and ".tex" files, and provide him with a downloadable PDF
file.

168 Chapter 14. Suggestions for Future Work

Appendices

169

Appendix A

Commands in the canthology

package

The numerous commands defined in the canthology package have been
discussed in various chapters of this manual. This appendix summarise the
names of those commands, and provide cross references to the sections in
which the commands are discussed in detail.

Labelled constructs Section 12.2 on page 138
\lpart \lchapter \lsection \lsubsection

\lsubsubsection \lparagraph \lsubparagraph

\lcaption

Anonymous section Section 2.3 on page 12
\anonymoussection

Author’s name and details Sections 2.2–2.4, starting on page 10
\chapterAuthorInfo \sectionAuthorInfo \poemAuthorInfo

Reviewer praise for a book Section 9.9 on page 94
\praise

170

171

Cross references without page numbers Section 9.10.2 on page 102
\xa \xc \xf \xp \xs \xt

Cross references with page numbers Section 9.10.2 on page 102
\xap \xcp \xfp \xpp \xsp \xtp

Simplify varioref cross references Section 9.10.3 on page 105
\simplifyVariorefReferences

Page backgrounds Section 9.6 on page 87
\thisPageBackgroundColor \everyPageBackgroundColor

\thisPageBackgroundImage \everyPageBackgroundImage

\thisPageBackgroundCommand \everyPageBackgroundCommand

\clearPageBackground

Appendix B

Configuration File Syntax

B.1 Introduction

This appendix discusses all the syntax acceptable in configuration files.
Figure B.1 provides a formal grammar for most of the syntax but, for
brevity, the grammar omits some definitions. For example, the lexical
definition of comments, strings and identifiers are discussed in text rather
than being defined in the grammar of Figure B.1. Likewise, the string
and list functions (denoted by StringFunction and ListFunction in the
grammar) are discussed in text rather than being defined in the grammar.

B.2 Comments

A comment starts with the # character and continues until the end of the
line, as shown in the example below:

This is a comment

Comments are removed by the lexical analyser, which is why they are not
mentioned in the formal grammar in Figure B.1.

172

B.3. Strings 173

Figure B.1: Formal grammar of Config4* syntax

Notation: | denotes choice, [...] denotes an optional component, and
{...}* denotes 0 or more repetitions.

configFile = StmtList

StmtList = { Stmt }*
Stmt = IDENTIFIER "=" StringExpr ";"

| IDENTIFIER "=" ListExpr ";"

| IDENTIFIER "{" StmtList "}" [";"]

| "@include" StringExpr ["@ifExists"] ";"

| "@copyFrom" IDENTIFIER ["@ifExists"] ";"

| "@remove" IDENTIFIER ";"

| "@error" StringExpr ";"

| "@if" "(" Condition ")" "{" StmtList "}"

{ "@elseIf" "(" Condition ")" "{" StmtList "}" }*
["@else" "{" StmtList "}"]

[";"]

StringExpr = String { "+" String }*
String = STRING

| IDENTIFIER

| StringFunction

ListExpr = List { "+" List }*
List = "[" "]"

| "[" StringExpr { "," StringExpr }* [","] "]"

| IDENTIFIER

| ListFunction

Condition = OrCondition

OrCondition = AndCondition { "||" AndCondition }*
AndCondition = TermCondition { "&&" TermCondition }*
TermCondition = ["!"] "(" Condition ")"

| StringExpr "==" StringExpr

| StringExpr "!=" StringExpr

| StringExpr "@in" ListExpr

| StringExpr "@matches" StringExpr

B.3 Strings

There are two ways to write a STRING.
The first way is as a sequence of characters enclosed within double

quotes. Within such a string, % acts as an escape character. The recog-
nized escape sequences are as follows: %n denotes a newline character.;

174 Appendix B. Configuration File Syntax

%t denotes a TAB character; %" denotes a double quote; and %% denotes
a percent sign. Many programming languages use \ as an escape charac-
ter, so the use of % may seem strange to some people. However, in my
experience, using \ as an escape character results in awkwardness when
writing Windows-style directory names, such as C:\temp\foo.txt, which
normally have to be written as C:\\temp\\foo.txt. Config4* uses % as
the escape character to avoid this problem.

The second way to write a string is as a (possibly multi-line) sequence
of characters enclosed between <% and %>. No escape sequences are recog-
nised between <% and %>. If the <%...%> notation seems familiar to some
readers it is because this notation is borrowed from Java Server Pages
(JSP). The <%...%> notation is useful if you want to embed, say, a code
segment in a configuration file.

You can combine both forms of string by using the string concatenation
(+) operator. For example:

big_string = <%

... // some Java code

%> + "<%" + <%

... // some more Java code

%>;

B.4 Identifiers

An IDENTIFIER is a sequence of one or more of the following characters:
upper- or lower-case letters, digits, a minus sign (-), an underscore (_), a
colon (:), a period (.), a dollar sign ($), a question mark (?), a forward
slash (/) or a backslash (\). There are two comments to be made about
this range of allowable characters.

First, one goal of Config4* is to support internationalization, so ac-
cented characters (such as á and ö) and ideographs are permitted in an
IDENTIFIER. Likewise, the digits permitted in an IDENTIFIER include the
Roman digits (0 through to 9) as well as digits used in other scripts.

Second, a Config4* IDENTIFIER should be able to support names not
just in many human languages, but also names in many computer lan-

B.5. Assignment statements 175

guages. For example, ensuring that Foo$Bar, X::Y::Z, and done? are
valid identifiers makes it possible for a Config4* file to store meta-data
about applications written in many popular programming languages, such
as C++, Java, Perl and Ruby. Likewise, permitting / and \ in identifiers
enables a Config4* file to contain meta-data about file names and (a useful
subset of) URLs.

Config4* applies special treatment to any identifier that starts with
"uid-", for example, uid-foo. The "uid-" prefix denotes a unique iden-
tifier. Config4* modifies the name of a "uid-" prefixed variable by insert-
ing a sequence of nine digits and a minus sign after "uid-". For example,
uid-foo might be changed to uid-000000042-foo. The nine-digit number
starts at zero and is incremented by one for every encounter of an identifier
that has a "uid-" prefix.

If Config4* encounters an identifier starting with "uid-<digits>-",
then the digits are replaced with a newly generated nine-digit number.
This is to ensure correct behaviour in pathological cases. For example,
consider a configuration file that contains multiple uid-foo identifiers.
If this file is parsed and the dump() operation is used to save the parsed
file to, say, expanded-uid.cfg, then the newly written file may contain
identifiers of the form uid-<digits>-foo. Now consider another file of
the form:

uid-foo { ... };

uid-foo { ... };

uid-foo { ... };

@include "expanded-uid.cfg";

When parsing the above file, it is necessary to replace the digits of the
uid-foo entries contained in the expanded-uid.cfg file to ensure they do
not conflict with the expanded form of the uid-foo entries defined before
the @include command.

B.5 Assignment statements

An unconditional assignment statement takes the form:

176 Appendix B. Configuration File Syntax

name = value;

A conditional assignment statement takes the form:

name ?= value;

A conditional assignment statement assigns a value to the specified vari-
able only if the variable does not already have a value.

Both conditional and unconditional assignment statements are termi-
nated with a semicolon. A value can be either a string or a list of comma-
separated strings inside matching brackets, that is, [and].

local_domain = "bar.com"; # a string

some_fonts = ["Times", "Courier"]; # a list

You can use the + operator to concatenate strings and lists.

host = "foo." + local_domain;

all_fonts = some_fonts + ["Ariel", "Symbol"];

The above example also illustrates that one variable can be defined in
terms of a previously defined variable. For example, the host variable
is defined by concatenating a string and the local_domain variable.

B.6 Scopes

A configuration file can contain named scopes. The following example de-
fines a scope called server that contains several assignment statements.

server {

name = "bankSrv";

timeout = "2 minutes";

diagnostics_level = "2";

}

You can optionally place a semicolon after the closing brace of a scope.
The reason for this is that a scope looks a bit like a class definition in C++
or Java. A semicolon appears after the class definition in C++, but not in
Java.

B.6. Scopes 177

class Foo { ... }; // C++

class Bar { ... } // Java

Being flexible about whether or not a semicolon follows the closing
brace of a scope makes it easy for people who come from a C++ or Java
background.

You cannot use an @include statement (discussed in Section B.7) in-
side a scope. Instead, @include statements can be used only in the global
scope.

The fully scoped name of a variable is its local name prefixed by the
name of its enclosing scope and separated by a full stop/period. In the
example at the start of this section, the fully scoped name of timeout is
server.timeout. Use of scopes enables users to type local (that is, the
short form of) names rather than the longer, fully scoped names. The
example at the start of this section is equivalent to the following, more
verbose example, which does not use scopes:

server.name = "bankSrv";

server.timeout = "2 minutes";

server.diagnostics_level = "2";

You can re-open scopes and nest them arbitrarily. For example:

outer {

inner {

foo = "Hello, world";

};

};

outer.inner { # re-opening of scope

bar = "Goodbye, world";

};

When a variable is used in an expression, the search for that variable usu-
ally starts at the current scope and works outwards. You can override
this search order by prefixing the variable with a full stop/period; do-
ing this instructs Config4* to look for the specified variable in the global
scope. For example, the value of outer.inner.food_1 below is "apples

178 Appendix B. Configuration File Syntax

and oranges", while the value of outer.inner.food_2 is "apples and

bananas".

fruit = "bananas";

outer {

fruit = "oranges";

inner {

food_1 = "apples and " + fruit;

food_2 = "apples and " + .fruit;

};

};

B.7 The @include statement

An @include statement instructs Config4* to parse the specified configu-
ration file.

@include "/tmp/foo.cfg";

By default, @include reports an error if the specified file does not exist.
However, if you place @ifExists at the end of an @include statement,
then @include does not complain about a non-existent file.

@include "/tmp/foo.cfg" @ifExists;

The @include command can parse not just files, but also the output of
executing an external command. This is done by using a string of the form
"exec#command" as an argument to @include.

@include "exec#curl -sS http://localhost/someFile.cfg";

By default, @include reports an error if the specified command exits
with an error status. You can instruct Config4* to ignore the unsuccessful
execution of an @include command by placing @ifExists at the end of
the @include statement.

@include "exec#curl -sS http://localhost/someFile.cfg"

@ifExists;

B.8. The @copyFrom statement 179

B.8 The @copyFrom statement

The @copyFrom statement takes the following form:

@copyFrom "scope";

This command copies all the variables and nested scopes from the speci-
fied scope into the current scope. The typical use of this command is to
copy default values from one scope into several other scopes, as Figure B.2
shows.

Figure B.2: Examples of the @copyFrom statement
acme {

defaults {

log {

dir = "C:\acme\logs";

level = "0";

};

timeout = "2 minutes";

thread_pool_size = "5";

};

app_1 {

@copyFrom "acme.defaults";

};

app_2 {

@copyFrom "acme.defaults";

log.level = "1";

};

app_3 {

@copyFrom "acme.defaults";

thread_pool_size = "10";

};

};

In this example, the acme.defaults scope contains all the configu-
ration variables likely to have similar values in most of the applications
(denoted by the scopes acme.app_1, acme.app_2 and acme.app_3). Then,
the scope for a particular application, for example, acme.app_1, uses the
@copyFrom command to copy the values from the acme.defaults scope.
Notice that the acme.app_2 and acme.app_3 scopes copy all the values

180 Appendix B. Configuration File Syntax

from the acme.defaults scope, and then selectively override some val-
ues.

When using the @copyFrom statement, you must specify the fully scoped
name of the scope to be copied. For example, the @copyFrom statements
in Figure B.2 specify the scope as acme.defaults rather than as just
defaults. If a configuration file contains deeply nested scopes, then spec-
ifying the fully scoped name of a scope to be copied can result in unde-
sirable verbosity. However, Section B.12.6 on page 187 explains how the
siblingScope() function can reduce such verbosity.

By default, @copyFrom reports an error if the specified scope does not
exist. However, if you place @ifExists at the end of an @copyFrom state-
ment, then @copyFrom does not complain about a non-existent scope.

@copyFrom "acme.defaults" @ifExists;

The @ifExists form of the @copyFrom command can be used to override
some variables based on, for example, the operating system, the user run-
ning the application or the host on which the application is running.

override.pizza { ... }

override.pasta { ... }

fooSrv {

Set default values

...

Modify some values for particular hosts

@copyFrom "override." + exec("hostname") @ifExists;

}

B.9 The @if-then-@else Statement

Figure B.3 shows some examples of @if-then-@else statements.
The conditions used in @if-then-@else statements can be in any of the

following formats.

• "string" == "another string"

• "string" != "another string"

B.9. The @if-then-@else Statement 181

Figure B.3: Configuration file with advanced features
1 production_hosts = ["pizza", "pasta", "zucchini"];

2 test_hosts = ["foo", "bar", "widget", "acme"];

3

4 @if (exec("hostname") @in production_hosts) {

5 server_x.port = "5000";

6 server_y.port = "5001";

7 server_z.port = "5002";

8 } @elseIf (exec("hostname") @in test_hosts) {

9 server_x.port = "6000";

10 server_y.port = "6001";

11 server_z.port = "6002";

12 } @else {

13 @error "This is not a production or test machine";

14 }

15 @if (osType() == "windows") {

16 tmp_dir = replace(getenv("TMP"), "\", "/");

17 } @else {

18 tmp_dir = "/tmp";

19 }

• "string" @in ["a", "list", "of", "string"]

• "string" @matches "pattern". Within the pattern, * is a wildcard
that matches zero or more characters. For example, the condition
"hello" @matches "*lo" evaluates to true.

• condition && condition. This is the boolean AND of two condi-
tions.

• condition || condition. This is the boolean OR of two condi-
tions.

• (condition). The parenthesis are used for grouping.

• !(condition). This is the negation of a condition.

182 Appendix B. Configuration File Syntax

B.10 The @error Statement

The @error statement instructs Config4* to stop parsing and instead report
an error.

@error "Something has gone wrong";

Config4* reports the error by throwing an exception back to application
code. The application code should communicate the exception’s text mes-
sage to the user, for example, by writing the text message to a console or
displaying it in a dialog box of a graphical user application.

B.11 The @remove Statement

The @remove statement removes a previously-defined variable or scope.
To see why the @remove command might be useful, let us assume you want
to specify the full path names of several log files that happen to reside in
the same directory. It would be tedious to write the full path name of the
directory for each log file. Instead, you can define a temporary variable
called, say, _log_dir and used it as follows:

_log_dir = "/path/to/log/dir";

app1_log_file = _log_dir + "/app1.log";

app2_log_file = _log_dir + "/app2.log";

app3_log_file = _log_dir + "/app3.log";

@remove _log_dir;

A useful convention shown in the above example is to use an under-
score at the start of the name of a temporary variable. This makes it easy
to see which variables are “normal” variables and which are temporary
ones that will be removed later.

You may be wondering why temporary variables should be removed at
all. There are two reasons for this. First, unneeded variables clutter up
a configuration file, potentially causing confusion for users. Second, by
insisting a configuration scope contain only required variables, an applica-
tion can make use of a schema validator that can perform extensive error
checking on the contents of a configuration scope.

B.12. Functions 183

B.12 Functions

Table B.1 lists the functions that Config4* provides.

Table B.1: Config4* functions
Function Return type Section
configFile() string B.12.5
configType("name") string B.12.6
exec("command") string B.12.3
exec("command", "default value") string B.12.3
fileToDir("/path/to/file.txt") string B.12.5
getenv("name") string B.12.2
getenv("name", "default value") string B.12.2
isFileReadable("fileName.txt") boolean B.12.6
join(["list", "of", "string"], " ") string B.12.4
osDirSeparator() string B.12.1
osPathSeparator() string B.12.1
osType() string B.12.1
readFile("/path/to/file.txt") string B.12.5
replace("\a\b\c", "\", "/") string B.12.4
siblingScope("name") string B.12.6
split("red green blue", " ") list B.12.4

Config4* considers (to be part of a function name, so you cannot place
a space before it. For example, Config4* accepts the first statement below,
but reports an error for the second statement:

x = configFile(); # okay

y = configFile (); # error

Treating (as being part of a function’s name might seem strange, but
Config4* does this to guarantee that the names of functions do not con-
flict with the names of variables or scopes. This makes it possible for fu-
ture versions of Config4* to provide additional functions without any risk
of the newly added functions causing problems for existing configuration
files.

The following subsections discuss the functions in logical groupings.

184 Appendix B. Configuration File Syntax

B.12.1 Querying the Operating System

Some of the built-in functions have names starting with "os", which indi-
cates they return information about the operating system environment.

The osType() function returns "windows" if you are running on a Mi-
crosoft Windows-based computer, and "unix" if you are running on a
UNIX-based computer.

The osDirSeparator() function returns the character that the operat-
ing system uses as a directory separator. This is \ on Windows and / on
UNIX.

The osPathSeparator() function returns the character that the operat-
ing system uses to separate a list of directories. This is ; on Windows and
: on UNIX.

B.12.2 Accessing Environment Variables

The getenv() function enables you to access an environment variable.
This function can take either one or two parameters. The first parameter
is the name of the environment variable to access:

example = getenv("FOO_HOME");

The second (and optional) parameter to this function is a default value that
is used if the specified environment variable does not exist:

example = getenv("FOO_HOME", "/tmp");

If you do not specify a default value and the specified environment
variable does not exist, then Config4* reports an error:

someFile.cfg, line 12: cannot access the ’FOO_HOME’

environment variable

B.12.3 Executing External Commands

The exec() function executes an external command and returns whatever
text that command writes to its standard output. This function can take
either one or two parameters. The first parameter is the external command
to execute, as the following examples illustrate:

B.12. Functions 185

example_1 = exec("hostname");

example_2 = exec("ls /tmp");

example_3 = exec("ls " + getenv("HOME", "/"));

The second (and optional) parameter to this function is a default value
that is used if Config4* cannot successfully execute the specified external
command:

example = exec("hostname", "localhost");

If you do not specify a default value and Config4* cannot successfully
execute the specified external command, then Config4* reports an error:

someFile.cfg, line 3: exec("ls /x/y/z") failed:

ls: /x/y/z: No such file or directory

B.12.4 Manipulating Strings and Lists

The example below illustrates the split() and join() functions:

colours_and_spaces = "red green blue";

colour_list = split(colours_and_spaces, " ");

colours_and_commas = join(colour_list, ",");

The split() function takes two parameters. The first parameter is a
string to be broken up into a list of smaller strings. The second parameter
indicates a search string; the first string is broken into list elements at each
occurrence of this search string. In the above example, colour_list is
assigned the value ["red", "green", "blue"].

The join() function is the opposite of split(). It takes two parame-
ters; the first parameter is a list and the second parameter is a string. The
join() function concatenates all the elements of the list using the string
as a separator. In the above example, colours_and_commas is assigned the
value "red,green,blue".

In the above example, the overall effect of using split() and join()

is to replace all spaces in a string with commas. To make this easier,
Config4* provides a replace() function.

186 Appendix B. Configuration File Syntax

colours_and_commas=replace("red green blue", " ", ",");

The replace() function takes three string parameters: original, search
and replacement. This function replaces all occurrences of the search
string in the original string with the replacement string.

B.12.5 Files and Directories

The configFile() function does not take any parameters; it returns the
name of the configuration file being parsed.

The fileToDir() function takes one parameter—the name of a file—
and returns the name of the directory in which that file resides. The re-
turned directory name is guaranteed to not have / or \ at the end. For ex-
ample, fileToDir("/tmp/foo.cfg") returns "/tmp". As the table in Ta-
ble B.2 shows, the fileToDir() function works even for boundary cases,
such as for files in the root directory of a file system.

Table B.2: Example results of calling fileToDir()

filename fileToDir(filename)

"/tmp/foo.cfg" "/tmp" (UNIX and Windows)
"C:\tmp\foo.cfg" "C:\tmp" (Windows only)
"foo.cfg" "." (UNIX and Windows)
"/foo.cfg" "/." (UNIX and Windows)
"\foo.cfg" "\." (Windows only)
"C:\foo.cfg" "C:\." (Windows only)

The combination fileToDir(configFile()) returns the directory in
which the configuration file being parsed resides. This can be useful if
you want to write a top-level configuration file that includes other config-
uration files residing within the same directory. For example:

@include fileToDir(configFile()) + "/file1.cfg";

@include fileToDir(configFile()) + "/file2.cfg";

@include fileToDir(configFile()) + "/file3.cfg";

This technique can work even if the configuration file is hosted on a web
server and is being accessed through the curl utility. To see why, let’s

B.12. Functions 187

assume the top-level configuration file is specified as:

exec#curl -sS http://myHost/foo/foo.cfg

Config4* will execute that command and parse its output. During this
parsing, the configFile() function returns:

exec#curl -sS http://myHost/foo/foo.cfg

The fileToDir() function does not check that its parameter is a valid file
name; rather it just trims its parameter back to the last occurrence of / or
\, so the result of fileToDir(configFile()) is:

exec#curl -sS http://myHost/foo

The first @include statement in the example appends "/file1.cfg", so
the @include statement becomes:

@include "exec#curl -sS http://myHost/foo/file1.cfg";

One thing to keep in mind is that downloading a multi-part configuration
file from a web server will be slower than downloading a monolithic con-
figuration file. It will probably take just a fraction of a second longer to
download the multi-part configuration file, so you might think that such
an overhead is insignificant. However, in a large organization there might
be thousands of users downloading their applications’ configuration files
from the same web server. In such an organization, all those fractions of a
second extra overhead might add up to be a significant overhead.

B.12.6 Miscellaneous Functions

The configType() function takes a string parameter that specifies the
fully-scoped name of an entry in the configuration file. It returns the value
"string" if the entry is a string variable, "list" if the entry is a list vari-
able, "scope" if the entry is a scope, or "no_value" if there is no such
entry.

The isFileReadable() function takes a string parameter that specifies
the name of a file. It returns true if the file exists and is readable; it returns
false otherwise. An example of the intended use of this function is shown
below:

188 Appendix B. Configuration File Syntax

files_to_process = ["file1.txt", "file2.txt"];

@if (isFileReadable("file3.txt")) {

files_to_process = files_to_process + ["file3.txt"];

}

The siblingScope() function takes a string parameter that specified
the local name of a scope that is a sibling of the current scope. It returns
the fully scoped name of the specified scope. This function is provided to
simplify a common use case of the @copyFrom statement that is shown in
Figure B.4.

Figure B.4: Verbose @copyFrom statements
acme.uk.london.sales {

defaults {

timeout = "2 minutes";

log.level = "1";

}

app1 {

@copyFrom "acme.uk.london.sales.defaults";

}

app2 {

@copyFrom "acme.uk.london.sales.defaults";

log.level = "0";

}

app3 {

@copyFrom "acme.uk.london.sales.defaults";

log.level = "0";

}

}

It is common for the @copyFrom statement to be used to copy the con-
tents of a scope that is at the same level of nesting—what I call a sibling
scope. If the sibling scope is deeply nested in the configuration file, then,
as shown in Figure B.4, the @copyFrom statement can be quite verbose.
If, later on, the scope hierarchy is renamed (perhaps by being copy-and-
pasted to another part of the configuration file), then all the @copyFrom

statements will have to be updated to specify the renamed sibling scope.
Doing this can be tedious and error-prone.

B.12. Functions 189

Figure B.5 shows the configuration file after it has been modified to
make use of the siblingScope() function. The @copyFrom statements in
this modified file are more concise and easier to visually verify for cor-
rectness. In addition, if the acme.uk.london.sales scope is renamed,
then the @copyFrom statements will continue to work without any need for
updating.

Figure B.5: Using siblingScope() to get concise @copyFrom statements
acme.uk.london.sales {

defaults {

timeout = "2 minutes";

log.level = "1";

}

app1 {

@copyFrom siblingScope("defaults");

}

app2 {

@copyFrom siblingScope("defaults");

log.level = "0";

}

app3 {

@copyFrom siblingScope("defaults");

log.level = "0";

}

}

Appendix C

GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation,

Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other

functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It comple-
ments the GNU General Public License, which is a copyleft license de-
signed for free software.

190

191

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as
a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be dis-
tributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing
the Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathemat-
ics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the

192 Appendix C. GNU Free Documentation License

Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as

Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the gen-
eral public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a vari-
ety of formats suitable for input to text formatters. A copy made in an oth-
erwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by read-
ers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, Post-
Script or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this Li-
cense requires to appear in the title page. For works in formats which do
not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of

193

the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document

whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning
of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover

194 Appendix C. GNU Free Documentation License

Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public
has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document un-

der the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modifica-
tion of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which

195

should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Ver-
sion, together with at least five of the principal authors of the Doc-
ument (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giv-
ing the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may

196 Appendix C. GNU Free Documentation License

omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sec-
tions in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement

197

made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released un-

der this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any
sections Entitled “Dedications”. You must delete all sections Entitled “En-
dorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other doc-

uments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

198 Appendix C. GNU Free Documentation License

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or dis-
tribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the en-
tire aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear
on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing In-
variant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invari-
ant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original ver-
sions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or dis-
claimer, the original version will prevail.

199

If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, unless
and until the copyright holder explicitly and finally terminates your li-
cense, and (b) permanently, if the copyright holder fails to notify you of
the violation by some reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vio-
lation of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the li-
censes of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same material does not give
you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License

200 Appendix C. GNU Free Documentation License

“or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Soft-
ware Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes you to choose that ver-
sion for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multi-
author Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike
3.0 license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this Li-
cense, and if all works that were first published under this License some-
where other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and (2)
were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your

201

documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

Appendix D

The GNU General Public
License

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for soft-
ware and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for them if you

202

203

wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs, and that
you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that you
received. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License giving
you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and authors’
sake, the GPL requires that modified versions be marked as changed, so
that their problems will not be attributed erroneously to authors of previ-
ous versions.

Some devices are designed to deny users access to install or run mod-
ified versions of the software inside them, although the manufacturer can
do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such
problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to avoid
the special danger that patents applied to a free program could make it ef-
fectively proprietary. To prevent this, the GPL assures that patents cannot

204 Appendix D. The GNU General Public License

be used to render the program non-free.
The precise terms and conditions for copying, distribution and modifi-

cation follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public Li-
cense.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and “re-
cipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the mak-
ing of an exact copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work
based on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for in-
fringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copy-
ing, distribution (with or without modification), making available to
the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables
other parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not con-
veying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2) tells

205

the user that there is no warranty for the work (except to the extent
that warranties are provided), that licensees may convey the work
under this License, and how to view a copy of this License. If the
interface presents a list of user commands or options, such as a menu,
a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything,
other than the work as a whole, that (a) is included in the normal form
of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which
an implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential com-
ponent (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means
all the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding
Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynam-
ically linked subprograms that the work is specifically designed to

206 Appendix D. The GNU General Public License

require, such as by intimate data communication or control flow be-
tween those subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copy-
right on the Program, and are irrevocable provided the stated condi-
tions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright
law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole pur-
pose of having them make modifications exclusively for you, or pro-
vide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for
which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their rela-
tionship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

207

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such mea-
sures.

When you convey a covered work, you waive any legal power to
forbid circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention to
limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these condi-
tions:

(a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7.

208 Appendix D. The GNU General Public License

This requirement modifies the requirement in section 4 to “keep
intact all notices”.

(c) You must license the entire work, as a whole, under this License
to anyone who comes into possession of a copy. This License
will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regard-
less of how they are packaged. This License gives no permission
to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Ap-
propriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond
what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of
the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-
readable Corresponding Source under the terms of this License, in
one of these ways:

(a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium cus-
tomarily used for software interchange.

209

(b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as long
as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1)
a copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This alterna-
tive is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with
subsection 6b.

(d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place
to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you
maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that
it is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, pro-
vided you inform other peers where the object code and Cor-
responding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is ex-

210 Appendix D. The GNU General Public License

cluded from the Corresponding Source as a System Library, need
not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, re-
gardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer
uses, unless such uses represent the only significant mode of use of
the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to in-
stall and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a fixed
term (regardless of how the transaction is characterized), the Corre-
sponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install modi-
fied object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include

211

a requirement to continue to provide support service, warranty, or up-
dates for a work that has been modified or installed by the recipient,
or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself ma-
terially and adversely affects the operation of the network or violates
the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information pro-
vided, in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright hold-
ers of that material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or

212 Appendix D. The GNU General Public License

author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

(e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that mate-
rial by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose
on those licensors and authors.

All other non-permissive additional terms are considered “further re-
strictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License,
you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the additional
terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions; the
above requirements apply either way.

8. Termination.

213

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is rein-
stated permanently if the copyright holder notifies you of the vio-
lation by some reasonable means, this is the first time you have re-
ceived notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you un-
der this License. If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new licenses for the
same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate
or modify any covered work. These actions infringe copyright if you
do not accept this License. Therefore, by modifying or propagating
a covered work, you indicate your acceptance of this License to do
so.

10. Automatic Licensing of Downstream Recipients.

214 Appendix D. The GNU General Public License

Each time you convey a covered work, the recipient automatically re-
ceives a license from the original licensors, to run, modify and prop-
agate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an or-
ganization, or substantially all assets of one, or subdividing an orga-
nization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who
receives a copy of the work also receives whatever licenses to the
work the party’s predecessor in interest had or could give under the
previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predeces-
sor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale,
or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.
The work thus licensed is called the contributor’s “contributor ver-
sion”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or here-
after acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a conse-
quence of further modification of the contributor version. For pur-
poses of this definition, “control” includes the right to grant patent

215

sublicenses in a manner consistent with the requirements of this Li-
cense.

Each contributor grants you a non-exclusive, worldwide, royalty-
free patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license
to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent li-
cense, and the Corresponding Source of the work is not available
for anyone to copy, free of charge and under the terms of this Li-
cense, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Correspond-
ing Source to be so available, or (2) arrange to deprive yourself of
the benefit of the patent license for this particular work, or (3) ar-
range, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your re-
cipient’s use of the covered work in a country, would infringe one
or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrange-
ment, you convey, or propagate by procuring conveyance of, a cov-
ered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or con-
vey a specific copy of the covered work, then the patent license you
grant is automatically extended to all recipients of the covered work
and works based on it.

216 Appendix D. The GNU General Public License

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the par-
ties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work con-
veyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain
the covered work, unless you entered into that arrangement, or that
patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may oth-
erwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have per-
mission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms

217

of this License will continue to apply to the part which is the cov-
ered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Pro-
gram specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the op-
tion of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foun-
dation. If the Program does not specify a version number of the GNU
General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different permis-
sions. However, no additional obligations are imposed on any author
or copyright holder as a result of your choosing to follow a later ver-
sion.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

218 Appendix D. The GNU General Public License

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PRO-
GRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms, re-
viewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Pro-
gram, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make

219

it free software which everyone can redistribute and change under
these terms.
To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state the
exclusion of warranty; and each file should have at least the “copy-
right” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short notice
like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the ap-
propriate parts of the General Public License. Of course, your pro-
gram’s commands might be different; for a GUI interface, you would
use an “about box”.
You should also get your employer (if you work as a programmer)
or school, if any, to sign a “copyright disclaimer” for the program,

220 Appendix D. The GNU General Public License

if necessary. For more information on this, and how to apply and
follow the GNU GPL, see http://www.gnu.org/licenses/.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking propri-
etary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/why-not-

lgpl.html.

Appendix E

The LATEX Project Public License

LPPL Version 1.3c 2008-05-04
Copyright 1999, 2002–2008 LATEX3 Project

Everyone is allowed to distribute verbatim copies of this
license document, but modification of it is not allowed.

Preamble

The LATEX Project Public License (LPPL) is the primary license under
which the LATEX kernel and the base LATEX packages are distributed.

You may use this license for any work of which you hold the copyright
and which you wish to distribute. This license may be particularly suitable
if your work is TEX-related (such as a LATEX package), but it is written in
such a way that you can use it even if your work is unrelated to TEX.

The section ‘WHETHER AND HOW TO DISTRIBUTE WORKS
UNDER THIS LICENSE’, below, gives instructions, examples, and rec-
ommendations for authors who are considering distributing their works
under this license.

This license gives conditions under which a work may be distributed
and modified, as well as conditions under which modified versions of that
work may be distributed.

221

222 Appendix E. The LATEX Project Public License

We, the LATEX3 Project, believe that the conditions below give you the
freedom to make and distribute modified versions of your work that con-
form with whatever technical specifications you wish while maintaining
the availability, integrity, and reliability of that work. If you do not see
how to achieve your goal while meeting these conditions, then read the
document ‘cfgguide.tex’ and ‘modguide.tex’ in the base LATEX distri-
bution for suggestions.

Definitions

In this license document the following terms are used:

Work Any work being distributed under this License.

Derived Work Any work that under any applicable law is derived from
the Work.

Modification Any procedure that produces a Derived Work under any
applicable law – for example, the production of a file containing an
original file associated with the Work or a significant portion of such
a file, either verbatim or with modifications and/or translated into
another language.

Modify To apply any procedure that produces a Derived Work under any
applicable law.

Distribution Making copies of the Work available from one person to
another, in whole or in part. Distribution includes (but is not limited
to) making any electronic components of the Work accessible by file
transfer protocols such as FTP or HTTP or by shared file systems such
as Sun’s Network File System (NFS).

Compiled Work A version of the Work that has been processed into a
form where it is directly usable on a computer system. This process-
ing may include using installation facilities provided by the Work,
transformations of the Work, copying of components of the Work, or

223

other activities. Note that modification of any installation facilities
provided by the Work constitutes modification of the Work.

Current Maintainer A person or persons nominated as such within the
Work. If there is no such explicit nomination then it is the ‘Copyright
Holder’ under any applicable law.

Base Interpreter A program or process that is normally needed for run-
ning or interpreting a part or the whole of the Work.

A Base Interpreter may depend on external components but these
are not considered part of the Base Interpreter provided that each
external component clearly identifies itself whenever it is used inter-
actively. Unless explicitly specified when applying the license to the
Work, the only applicable Base Interpreter is a ‘LATEX-Format’ or in
the case of files belonging to the ‘LATEX-format’ a program imple-
menting the ‘TEX language’.

Conditions on Distribution and Modification

1. Activities other than distribution and/or modification of the Work are
not covered by this license; they are outside its scope. In particular,
the act of running the Work is not restricted and no requirements are
made concerning any offers of support for the Work.

2. You may distribute a complete, unmodified copy of the Work as you
received it. Distribution of only part of the Work is considered mod-
ification of the Work, and no right to distribute such a Derived Work
may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been generated from a
complete, unmodified copy of the Work as distributed under Clause 2
above, as long as that Compiled Work is distributed in such a way that
the recipients may install the Compiled Work on their system exactly
as it would have been installed if they generated a Compiled Work
directly from the Work.

224 Appendix E. The LATEX Project Public License

4. If you are the Current Maintainer of the Work, you may, without
restriction, modify the Work, thus creating a Derived Work. You
may also distribute the Derived Work without restriction, including
Compiled Works generated from the Derived Work. Derived Works
distributed in this manner by the Current Maintainer are considered
to be updated versions of the Work.

5. If you are not the Current Maintainer of the Work, you may mod-
ify your copy of the Work, thus creating a Derived Work based on
the Work, and compile this Derived Work, thus creating a Compiled
Work based on the Derived Work.

6. If you are not the Current Maintainer of the Work, you may distribute
a Derived Work provided the following conditions are met for every
component of the Work unless that component clearly states in the
copyright notice that it is exempt from that condition. Only the Cur-
rent Maintainer is allowed to add such statements of exemption to a
component of the Work.

(a) If a component of this Derived Work can be a direct replace-
ment for a component of the Work when that component is used
with the Base Interpreter, then, wherever this component of the
Work identifies itself to the user when used interactively with
that Base Interpreter, the replacement component of this Derived
Work clearly and unambiguously identifies itself as a modified
version of this component to the user when used interactively
with that Base Interpreter.

(b) Every component of the Derived Work contains prominent no-
tices detailing the nature of the changes to that component, or a
prominent reference to another file that is distributed as part of
the Derived Work and that contains a complete and accurate log
of the changes.

(c) No information in the Derived Work implies that any persons,
including (but not limited to) the authors of the original version
of the Work, provide any support, including (but not limited to)

225

the reporting and handling of errors, to recipients of the Derived
Work unless those persons have stated explicitly that they do
provide such support for the Derived Work.

(d) You distribute at least one of the following with the Derived
Work:

i. A complete, unmodified copy of the Work; if your distribu-
tion of a modified component is made by offering access to
copy the modified component from a designated place, then
offering equivalent access to copy the Work from the same
or some similar place meets this condition, even though third
parties are not compelled to copy the Work along with the
modified component;

ii. Information that is sufficient to obtain a complete, unmodi-
fied copy of the Work.

7. If you are not the Current Maintainer of the Work, you may distribute
a Compiled Work generated from a Derived Work, as long as the
Derived Work is distributed to all recipients of the Compiled Work,
and as long as the conditions of Clause 6, above, are met with regard
to the Derived Work.

8. The conditions above are not intended to prohibit, and hence do not
apply to, the modification, by any method, of any component so that
it becomes identical to an updated version of that component of the
Work as it is distributed by the Current Maintainer under Clause 4,
above.

9. Distribution of the Work or any Derived Work in an alternative for-
mat, where the Work or that Derived Work (in whole or in part) is
then produced by applying some process to that format, does not re-
lax or nullify any sections of this license as they pertain to the results
of applying that process.

10. (a) A Derived Work may be distributed under a different license
provided that license itself honors the conditions listed in

226 Appendix E. The LATEX Project Public License

Clause 6 above, in regard to the Work, though it does not have
to honor the rest of the conditions in this license.

(b) If a Derived Work is distributed under a different license, that
Derived Work must provide sufficient documentation as part
of itself to allow each recipient of that Derived Work to honor
the restrictions in Clause 6 above, concerning changes from the
Work.

11. This license places no restrictions on works that are unrelated to the
Work, nor does this license place any restrictions on aggregating such
works with the Work by any means.

12. Nothing in this license is intended to, or may be used to, prevent
complete compliance by all parties with all applicable laws.

No Warranty

There is no warranty for the Work. Except when otherwise stated in writ-
ing, the Copyright Holder provides the Work ‘as is’, without warranty of
any kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose.
The entire risk as to the quality and performance of the Work is with you.
Should the Work prove defective, you assume the cost of all necessary
servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing
will The Copyright Holder, or any author named in the components of
the Work, or any other party who may distribute and/or modify the Work
as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of any use of the
Work or out of inability to use the Work (including, but not limited to, loss
of data, data being rendered inaccurate, or losses sustained by anyone as a
result of any failure of the Work to operate with any other programs), even
if the Copyright Holder or said author or said other party has been advised
of the possibility of such damages.

227

Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copyright Holder ex-
plicitly and prominently states near the primary copyright notice in the
Work that the Work can only be maintained by the Copyright Holder or
simply that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a Current Maintainer
who has indicated in the Work that they are willing to receive error reports
for the Work (for example, by supplying a valid e-mail address). It is not
required for the Current Maintainer to acknowledge or act upon these error
reports.

The Work changes from status ‘maintained’ to ‘unmaintained’ if there
is no Current Maintainer, or the person stated to be Current Maintainer of
the work cannot be reached through the indicated means of communica-
tion for a period of six months, and there are no other significant signs of
active maintenance.

You can become the Current Maintainer of the Work by agreement with
any existing Current Maintainer to take over this role.

If the Work is unmaintained, you can become the Current Maintainer
of the Work through the following steps:

1. Make a reasonable attempt to trace the Current Maintainer (and the
Copyright Holder, if the two differ) through the means of an Internet
or similar search.

2. If this search is successful, then enquire whether the Work is still
maintained.

(a) If it is being maintained, then ask the Current Maintainer to up-
date their communication data within one month.

(b) If the search is unsuccessful or no action to resume active
maintenance is taken by the Current Maintainer, then announce
within the pertinent community your intention to take over
maintenance. (If the Work is a LATEX work, this could be done,
for example, by posting to comp.text.tex.)

228 Appendix E. The LATEX Project Public License

3. (a) If the Current Maintainer is reachable and agrees to pass main-
tenance of the Work to you, then this takes effect immediately
upon announcement.

(b) If the Current Maintainer is not reachable and the Copyright
Holder agrees that maintenance of the Work be passed to you,
then this takes effect immediately upon announcement.

4. If you make an ‘intention announcement’ as described in 2b above
and after three months your intention is challenged neither by the
Current Maintainer nor by the Copyright Holder nor by other people,
then you may arrange for the Work to be changed so as to name you
as the (new) Current Maintainer.

5. If the previously unreachable Current Maintainer becomes reachable
once more within three months of a change completed under the
terms of 3b or 4, then that Current Maintainer must become or re-
main the Current Maintainer upon request provided they then update
their communication data within one month.

A change in the Current Maintainer does not, of itself, alter the fact that
the Work is distributed under the LPPL license.

If you become the Current Maintainer of the Work, you should imme-
diately provide, within the Work, a prominent and unambiguous statement
of your status as Current Maintainer. You should also announce your new
status to the same pertinent community as in 2b above.

Whether and How to Distribute Works under This Li-
cense

This section contains important instructions, examples, and recommenda-
tions for authors who are considering distributing their works under this
license. These authors are addressed as ‘you’ in this section.

229

Choosing This License or Another License

If for any part of your work you want or need to use distribution conditions
that differ significantly from those in this license, then do not refer to this
license anywhere in your work but, instead, distribute your work under a
different license. You may use the text of this license as a model for your
own license, but your license should not refer to the LPPL or otherwise
give the impression that your work is distributed under the LPPL.

The document ‘modguide.tex’ in the base LATEX distribution explains
the motivation behind the conditions of this license. It explains, for exam-
ple, why distributing LATEX under the GNU General Public License (GPL)
was considered inappropriate. Even if your work is unrelated to LATEX, the
discussion in ‘modguide.tex’ may still be relevant, and authors intending
to distribute their works under any license are encouraged to read it.

A Recommendation on Modification Without Distribution

It is wise never to modify a component of the Work, even for your own
personal use, without also meeting the above conditions for distributing
the modified component. While you might intend that such modifications
will never be distributed, often this will happen by accident – you may
forget that you have modified that component; or it may not occur to you
when allowing others to access the modified version that you are thus dis-
tributing it and violating the conditions of this license in ways that could
have legal implications and, worse, cause problems for the community. It
is therefore usually in your best interest to keep your copy of the Work
identical with the public one. Many works provide ways to control the
behavior of that work without altering any of its licensed components.

How to Use This License

To use this license, place in each of the components of your work both an
explicit copyright notice including your name and the year the work was
authored and/or last substantially modified. Include also a statement that

230 Appendix E. The LATEX Project Public License

the distribution and/or modification of that component is constrained by
the conditions in this license.

Here is an example of such a notice and statement:
%% pig.dtx

%% Copyright 2005 M. Y. Name

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% This work has the LPPL maintenance status ‘maintained’.

%

% The Current Maintainer of this work is M. Y. Name.

%

% This work consists of the files pig.dtx and pig.ins

% and the derived file pig.sty.

Given such a notice and statement in a file, the conditions given in
this license document would apply, with the ‘Work’ referring to the three
files ‘pig.dtx’, ‘pig.ins’, and ‘pig.sty’ (the last being generated from
‘pig.dtx’ using ‘pig.ins’), the ‘Base Interpreter’ referring to any ‘LATEX-
Format’, and both ‘Copyright Holder’ and ‘Current Maintainer’ referring
to the person ‘M. Y. Name’.

If you do not want the Maintenance section of LPPL to apply to your
Work, change ‘maintained’ above into ‘author-maintained’. However, we
recommend that you use ‘maintained’ as the Maintenance section was
added in order to ensure that your Work remains useful to the commu-
nity even when you can no longer maintain and support it yourself.

Derived Works That Are Not Replacements

Several clauses of the LPPL specify means to provide reliability and sta-
bility for the user community. They therefore concern themselves with the
case that a Derived Work is intended to be used as a (compatible or incom-
patible) replacement of the original Work. If this is not the case (e.g., if a

231

few lines of code are reused for a completely different task), then clauses
6b and 6d shall not apply.

Important Recommendations

Defining What Constitutes the Work

The LPPL requires that distributions of the Work contain all the files of
the Work. It is therefore important that you provide a way for the licensee
to determine which files constitute the Work. This could, for example, be
achieved by explicitly listing all the files of the Work near the copyright
notice of each file or by using a line such as:

% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it might be impossible
for the licensee to determine what is considered by you to comprise the
Work and, in such a case, the licensee would be entitled to make reason-
able conjectures as to which files comprise the Work.

Bibliography

[1] Donald Arseneau. The framed package, 2007. http://mirrors.ctan
.org/macros/latex/contrib/framed/framed.pdf.

[2] David Carlisle. The ifthen package,
2001. www.tug.org/texlive/devsrc/Master/texmf-
dist/doc/latex/base/ifthen.pdf.

[3] D.P. Carlisle and The LATEX3 Project. Packages in the ‘graphics’
bundle, 2005. http://ctan.tug.org/tex-archive/macros/latex/required/
graphics/grfguide.pdf.

[4] Peter Flynn. Formatting information: An introduction to typeset-
ting with LATEX. A free PDF version of this book is available online:
http://latex.silmaril.ie/formattinginformation/beginlatex-a4.pdf.

[5] Leslie Lamport. LATEX: a Document Preparation System. Addison
Wesley, second edition, 1994. You should avoid the first edition of
this book because it covers the now obsolete version 2.09 of LATEX.
The second edition of the book has been updated for the current ver-
sion of LATEX, which is called LATEX 2ε.

[6] Luc Maranget. HEVEA User Documentation, 2007. http://hevea.inria.fr
/distri/hevea-1.10-manual.pdf.

[7] Frank Mittelbach. The varioref package, 2011.
http://mirror.ctan.org/macros/latex/required/tools/varioref.pdf.

[8] Frank Mittelbach, Michel Goossens, Johannes Braams, David
Carlisle, and Chris Rowley. The LATEX Companion. Addison Wesley,

232

Bibliography 233

second edition, 2004. This large book (approximately 1100 pages)
discusses over 200 packages that are available for LATEX.

[9] Rolf Niepraschk. The eso-pic package, 2010. http://ctan.tug.org/
tex-archive/macros/latex/contrib/eso-pic/eso-pic.pdf.

[10] Tobias Oetiker. The Not So Short Introduction to LATEX 2ε.
2010. A free PDF version of this book is available online:
http://tobi.oetiker.ch/lshort/lshort.pdf. If you prefer, you can buy
a printed copy: www.lulu.com/product/paperback/the-not-so-short-
introduction-to-latex/12552267.

[11] The LATEX3 Project. LATEX 2ε for class and package writers, 1998.
www.latex-project.org/guides/clsguide.pdf.

[12] Hideo Umeki. The geometry package, 2010.
http://mirrors.ctan.org/macros/latex/contrib/geometry/geometry.pdf.

[13] Peter Wilson. Some Examples of Title Pages, 2010.
http://ctan.tug.org/info/latex-samples/titlepages.pdf.

[14] Peter Wilson and Lars Madsen. The Memoir Class for Config-
urable Typesetting User Guide. 2010. This book is available online:
www.tex.ac.uk/ctan/macros/latex/contrib/memoir/memman.pdf.

[15] Peter Wilson and Will Robertson. The appendix package, 2009.
http://mirrors.ctan.org/macros/latex/contrib/appendix/appendix.pdf.

Colophon

The contents of this manual were formatted using the markup language of
the LATEX typesetting system.1 Each chapter was written in its own ".tex"

file, and Canthology2 was used to create a root ".tex" file that included all
the other ".tex" files. Canthology then used pdflatex to generate PDF
versions of the manual, and HEVEA3 to create a HTML version.

The main font used in the PDF versions of the manual is 10pt Times
rather than the default Computer Modern fonts supplied with LATEX. The
decision to use Times was made because the author finds it easier to read
on computer screens. Beramono (scaled to 80% of its normal size) is used
as the typewriter-like font in examples.

1www.latex-project.org
2www.canthology.org
3http://hevea.inria.fr/

234

